Header

UZH-Logo

Maintenance Infos

Supermassive black hole tests of general relativity with eLISA


Huwyler, Cédric; Porter, Edward K; Jetzer, Philippe (2015). Supermassive black hole tests of general relativity with eLISA. Physical Review D (Particles, Fields, Gravitation and Cosmology), 91:024037.

Abstract

Motivated by the parametrized post-Einsteinian (ppE) scheme devised by Yunes and Pretorius, which introduces corrections to the post-Newtonian coefficients of the frequency domain gravitational waveform in order to emulate alternative theories of gravity, we compute analytical time domain waveforms that, after a numerical Fourier transform, aim to represent (phase corrected only) ppE waveforms. In this formalism, alternative theories manifest themselves via corrections to the phase and frequency, as predicted by general relativity (GR), at different post-Newtonian (PN) orders. To present a generic test of alternative theories of gravity, we assume that the coupling constant of each alternative theory is manifestly positive, allowing corrections to the GR waveforms to be either positive or negative. By exploring the capabilities of massive black hole binary GR waveforms in the detection and parameter estimation of corrected time domain ppE signals, using the current eLISA configuration (as presented for the European Space Agency Cosmic Vision L3 mission), we demonstrate that for corrections arising at higher than 1PN order in phase and frequency GR waveforms are sufficient for both detecting and estimating the parameters of alternative theory signals. However, for theories introducing corrections at the 0 and 0.5PN orders, GR waveforms are not capable of covering the entire parameter space, requiring the use of non-GR waveforms for detection and parameter estimation.

Abstract

Motivated by the parametrized post-Einsteinian (ppE) scheme devised by Yunes and Pretorius, which introduces corrections to the post-Newtonian coefficients of the frequency domain gravitational waveform in order to emulate alternative theories of gravity, we compute analytical time domain waveforms that, after a numerical Fourier transform, aim to represent (phase corrected only) ppE waveforms. In this formalism, alternative theories manifest themselves via corrections to the phase and frequency, as predicted by general relativity (GR), at different post-Newtonian (PN) orders. To present a generic test of alternative theories of gravity, we assume that the coupling constant of each alternative theory is manifestly positive, allowing corrections to the GR waveforms to be either positive or negative. By exploring the capabilities of massive black hole binary GR waveforms in the detection and parameter estimation of corrected time domain ppE signals, using the current eLISA configuration (as presented for the European Space Agency Cosmic Vision L3 mission), we demonstrate that for corrections arising at higher than 1PN order in phase and frequency GR waveforms are sufficient for both detecting and estimating the parameters of alternative theory signals. However, for theories introducing corrections at the 0 and 0.5PN orders, GR waveforms are not capable of covering the entire parameter space, requiring the use of non-GR waveforms for detection and parameter estimation.

Statistics

Citations

5 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

12 downloads since deposited on 12 Feb 2016
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Language:English
Date:26 January 2015
Deposited On:12 Feb 2016 15:17
Last Modified:21 Nov 2017 18:23
Publisher:American Physical Society
ISSN:1550-2368
Publisher DOI:https://doi.org/10.1103/PhysRevD.91.024037
Other Identification Number:arXiv:1410.8815v2

Download

Download PDF  'Supermassive black hole tests of general relativity with eLISA'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 789kB
View at publisher