Header

UZH-Logo

Maintenance Infos

LHAPDF6: parton density access in the LHC precision era


Buckley, Andy; Ferrando, James; Lloyd, Stephen; Nordström, Karl; Page, Ben; Rüfenacht, Martin; Schönherr, Marek; Watt, Graeme (2015). LHAPDF6: parton density access in the LHC precision era. European Physical Journal C - Particles and Fields, 75:132.

Abstract

The Fortran LHAPDF library has been a long-term workhorse in particle physics, providing standardised access to parton density functions for experimental and phenomenological purposes alike, following on from the venerable PDFLIB package. During Run 1 of the LHC, however, several fundamental limitations in LHAPDF's design have became deeply problematic, restricting the usability of the library for important physics-study procedures and providing dangerous avenues by which to silently obtain incorrect results. In this paper we present the LHAPDF 6 library, a ground-up re-engineering of the PDFLIB/LHAPDF paradigm for PDF access which removes all limits on use of concurrent PDF sets, massively reduces static memory requirements, offers improved CPU performance, and fixes fundamental bugs in multi-set access to PDF metadata. The new design, restricted for now to interpolated PDFs, uses centralised numerical routines and a powerful cascading metadata system to decouple software releases from provision of new PDF data and allow completely general parton content. More than 200 PDF sets have been migrated from LHAPDF 5 to the new universal data format, via a stringent quality control procedure. LHAPDF 6 is supported by many Monte Carlo generators and other physics programs, in some cases via a full set of compatibility routines, and is recommended for the demanding PDF access needs of LHC Run 2 and beyond.

Abstract

The Fortran LHAPDF library has been a long-term workhorse in particle physics, providing standardised access to parton density functions for experimental and phenomenological purposes alike, following on from the venerable PDFLIB package. During Run 1 of the LHC, however, several fundamental limitations in LHAPDF's design have became deeply problematic, restricting the usability of the library for important physics-study procedures and providing dangerous avenues by which to silently obtain incorrect results. In this paper we present the LHAPDF 6 library, a ground-up re-engineering of the PDFLIB/LHAPDF paradigm for PDF access which removes all limits on use of concurrent PDF sets, massively reduces static memory requirements, offers improved CPU performance, and fixes fundamental bugs in multi-set access to PDF metadata. The new design, restricted for now to interpolated PDFs, uses centralised numerical routines and a powerful cascading metadata system to decouple software releases from provision of new PDF data and allow completely general parton content. More than 200 PDF sets have been migrated from LHAPDF 5 to the new universal data format, via a stringent quality control procedure. LHAPDF 6 is supported by many Monte Carlo generators and other physics programs, in some cases via a full set of compatibility routines, and is recommended for the demanding PDF access needs of LHC Run 2 and beyond.

Statistics

Citations

117 citations in Web of Science®
79 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

33 downloads since deposited on 12 Feb 2016
24 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Language:English
Date:2015
Deposited On:12 Feb 2016 12:00
Last Modified:01 Sep 2017 12:30
Publisher:Springer
ISSN:1434-6044
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1140/epjc/s10052-015-3318-8
Other Identification Number:arXiv:1412.7420v2

Download

Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 713kB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)
Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 906kB
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)