Header

UZH-Logo

Maintenance Infos

You Should Use Regression to Detect Cells


Kainz, Philipp; Urschler, Martin; Schulter, Samuel; Wohlhart, Paul; Lepetit, Vincent (2015). You Should Use Regression to Detect Cells. In: Navab, Nassir. Lecture Notes in Computer Science. Cham, 276-283.

Abstract

Automated cell detection in histopathology images is a hard problem due to the large variance of cell shape and appearance. We show that cells can be detected reliably in images by predicting, for each pixel location, a monotonous function of the distance to the center of the closest cell. Cell centers can then be identified by extracting local extremums of the predicted values. This approach results in a very simple method, which is easy to implement. We show on two challenging microscopy image datasets that our approach outperforms state-of-the-art methods in terms of accuracy, reliability, and speed. We also introduce a new dataset that we will make publicly available.

Abstract

Automated cell detection in histopathology images is a hard problem due to the large variance of cell shape and appearance. We show that cells can be detected reliably in images by predicting, for each pixel location, a monotonous function of the distance to the center of the closest cell. Cell centers can then be identified by extracting local extremums of the predicted values. This approach results in a very simple method, which is easy to implement. We show on two challenging microscopy image datasets that our approach outperforms state-of-the-art methods in terms of accuracy, reliability, and speed. We also introduce a new dataset that we will make publicly available.

Statistics

Citations

5 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Book Section, not refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2015
Deposited On:09 Feb 2016 15:56
Last Modified:05 Apr 2016 20:04
Additional Information:Chapter Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015
Publisher DOI:https://doi.org/10.1007/978-3-319-24574-4_33

Download

Full text not available from this repository.
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations