Header

UZH-Logo

Maintenance Infos

Galaxy evolution: modelling the role of non-thermal pressure in the interstellar medium


Birnboim, Yuval; Balberg, Shmuel; Teyssier, Romain (2015). Galaxy evolution: modelling the role of non-thermal pressure in the interstellar medium. Monthly Notices of the Royal Astronomical Society, 447(4):3678-3692.

Abstract

Galaxy evolution depends strongly on the physics of the interstellar medium (ISM). Motivated by the need to incorporate the properties of the ISM in cosmological simulations, we construct a simple method to include the contribution of non-thermal components in the calculation of pressure of interstellar gas. In our method, we treat three non-thermal components - turbulence, magnetic fields and cosmic rays - and effectively parametrize their amplitude. We assume that the three components settle into a quasi-steady-state that is governed by the star formation rate, and calibrate their magnitude and density dependence by the observed radio-FIR correlation, relating synchrotron radiation to star formation rates of galaxies. We implement our model in single-cell numerical simulation of a parcel of gas with constant pressure boundary conditions and demonstrate its effect and potential. Then, the non-thermal pressure model is incorporated into RAMSES and hydrodynamic simulations of isolated galaxies with and without the non-thermal pressure model are presented and studied. Specifically, we demonstrate that the inclusion of realistic non-thermal pressure reduces the star formation rate by an order of magnitude and increases the gas depletion time by as much. We conclude that the non-thermal pressure can prolong the star formation epoch and achieve consistency with observations without invoking artificially strong stellar feedback.

Abstract

Galaxy evolution depends strongly on the physics of the interstellar medium (ISM). Motivated by the need to incorporate the properties of the ISM in cosmological simulations, we construct a simple method to include the contribution of non-thermal components in the calculation of pressure of interstellar gas. In our method, we treat three non-thermal components - turbulence, magnetic fields and cosmic rays - and effectively parametrize their amplitude. We assume that the three components settle into a quasi-steady-state that is governed by the star formation rate, and calibrate their magnitude and density dependence by the observed radio-FIR correlation, relating synchrotron radiation to star formation rates of galaxies. We implement our model in single-cell numerical simulation of a parcel of gas with constant pressure boundary conditions and demonstrate its effect and potential. Then, the non-thermal pressure model is incorporated into RAMSES and hydrodynamic simulations of isolated galaxies with and without the non-thermal pressure model are presented and studied. Specifically, we demonstrate that the inclusion of realistic non-thermal pressure reduces the star formation rate by an order of magnitude and increases the gas depletion time by as much. We conclude that the non-thermal pressure can prolong the star formation epoch and achieve consistency with observations without invoking artificially strong stellar feedback.

Statistics

Citations

2 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

35 downloads since deposited on 22 Feb 2016
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:March 2015
Deposited On:22 Feb 2016 14:24
Last Modified:08 Dec 2017 18:33
Publisher:Oxford University Press
ISSN:0035-8711
Additional Information:This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society © 2015 The Authors Published by Oxford University Press on behalf of Royal Astronomical Society. All rights reserved.
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/mnras/stu2717
Other Identification Number:arXiv:1311.1206v3

Download

Download PDF  'Galaxy evolution: modelling the role of non-thermal pressure in the interstellar medium'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher
Download PDF  'Galaxy evolution: modelling the role of non-thermal pressure in the interstellar medium'.
Preview
Content: Published Version
Filetype: PDF
Size: 3MB