Header

UZH-Logo

Maintenance Infos

Maternal body size as a morphological constraint on egg size and fecundity in butterflies


Bauerfeind, Stephanie S; Fischer, Klaus (2008). Maternal body size as a morphological constraint on egg size and fecundity in butterflies. Basic and Applied Ecology, 9(4):443-451.

Abstract

It is a widespread notion that in arthropods female reproductive output is strongly affected by female size. In butterflies egg size scales positively with female size across species, suggesting a constraint imposed by maternal size. However, in intraspecific comparisons body size often explains only a minor part of the variation in progeny size. We here include representatives of various butterfly families to test the generality of this phenomenon across butterflies. Phenotypic correlations between egg and maternal body size were inconsistent across species: correlations were nonsignificant for Pararge aegeria and Lycaena tityrus, significantly positive for Papilio machaon, significantly negative for Araschnia levana, and contradictory for Pieris napi. Thus, there was no general pattern linking egg size to maternal size, e.g., caused by an allometric relationship. Consequently, there was at best limited evidence for maternal size acting as a morphological constraint on egg size within butterfly species. Realized fecundity depended on maternal size in P. napi and A. levana, but not in P. aegeria, suggesting that maternal size may affect egg number more strongly than
egg size. Yet, variation in fecundity was primarily explained by variation in longevity as is expected for income breeders. Heritability estimates across species were rather similar for pupal mass (ranging between 0.14 and 0.19), but more variable for egg size (0.17–0.31).

Abstract

It is a widespread notion that in arthropods female reproductive output is strongly affected by female size. In butterflies egg size scales positively with female size across species, suggesting a constraint imposed by maternal size. However, in intraspecific comparisons body size often explains only a minor part of the variation in progeny size. We here include representatives of various butterfly families to test the generality of this phenomenon across butterflies. Phenotypic correlations between egg and maternal body size were inconsistent across species: correlations were nonsignificant for Pararge aegeria and Lycaena tityrus, significantly positive for Papilio machaon, significantly negative for Araschnia levana, and contradictory for Pieris napi. Thus, there was no general pattern linking egg size to maternal size, e.g., caused by an allometric relationship. Consequently, there was at best limited evidence for maternal size acting as a morphological constraint on egg size within butterfly species. Realized fecundity depended on maternal size in P. napi and A. levana, but not in P. aegeria, suggesting that maternal size may affect egg number more strongly than
egg size. Yet, variation in fecundity was primarily explained by variation in longevity as is expected for income breeders. Heritability estimates across species were rather similar for pupal mass (ranging between 0.14 and 0.19), but more variable for egg size (0.17–0.31).

Statistics

Citations

25 citations in Web of Science®
27 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 04 Feb 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:1 July 2008
Deposited On:04 Feb 2009 14:30
Last Modified:06 Dec 2017 17:35
Publisher:Elsevier
ISSN:1439-1791
Publisher DOI:https://doi.org/10.1016/j.baae.2007.05.005

Download