Header

UZH-Logo

Maintenance Infos

Galaxies that shine: radiation-hydrodynamical simulations of disc galaxies


Rosdahl, J; Schaye, J; Teyssier, R; Agertz, O (2015). Galaxies that shine: radiation-hydrodynamical simulations of disc galaxies. Monthly Notices of the Royal Astronomical Society, 451(1):34-58.

Abstract

Radiation feedback is typically implemented using subgrid recipes in hydrodynamical simulations of galaxies. Very little work has so far been performed using radiation-hydrodynamics (RHD), and there is no consensus on the importance of radiation feedback in galaxy evolution. We present RHD simulations of isolated galaxy discs of different masses with a resolution of 18 pc. Besides accounting for supernova feedback, our simulations are the first galaxy-scale simulations to include RHD treatments of photoionization heating and radiation pressure, from both direct optical/UV radiation and multiscattered, re-processed infrared (IR) radiation. Photoheating smooths and thickens the discs and suppresses star formation about as much as the inclusion of (`thermal dump') supernova feedback does. These effects decrease with galaxy mass and are mainly due to the prevention of the formation of dense clouds, as opposed to their destruction. Radiation pressure, whether from direct or IR radiation, has little effect, but for the IR radiation we show that its impact is limited by our inability to resolve the high optical depths for which multiscattering becomes important. While artificially boosting the IR optical depths does reduce the star formation, it does so by smoothing the gas rather than by generating stronger outflows. We conclude that although higher resolution simulations, and potentially also different supernova implementations, are needed for confirmation, our findings suggest that radiation feedback is more gentle and less effective than is often assumed in subgrid prescriptions.

Abstract

Radiation feedback is typically implemented using subgrid recipes in hydrodynamical simulations of galaxies. Very little work has so far been performed using radiation-hydrodynamics (RHD), and there is no consensus on the importance of radiation feedback in galaxy evolution. We present RHD simulations of isolated galaxy discs of different masses with a resolution of 18 pc. Besides accounting for supernova feedback, our simulations are the first galaxy-scale simulations to include RHD treatments of photoionization heating and radiation pressure, from both direct optical/UV radiation and multiscattered, re-processed infrared (IR) radiation. Photoheating smooths and thickens the discs and suppresses star formation about as much as the inclusion of (`thermal dump') supernova feedback does. These effects decrease with galaxy mass and are mainly due to the prevention of the formation of dense clouds, as opposed to their destruction. Radiation pressure, whether from direct or IR radiation, has little effect, but for the IR radiation we show that its impact is limited by our inability to resolve the high optical depths for which multiscattering becomes important. While artificially boosting the IR optical depths does reduce the star formation, it does so by smoothing the gas rather than by generating stronger outflows. We conclude that although higher resolution simulations, and potentially also different supernova implementations, are needed for confirmation, our findings suggest that radiation feedback is more gentle and less effective than is often assumed in subgrid prescriptions.

Statistics

Citations

24 citations in Web of Science®
17 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

29 downloads since deposited on 22 Feb 2016
11 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:July 2015
Deposited On:22 Feb 2016 14:24
Last Modified:08 Dec 2017 18:35
Publisher:Oxford University Press
ISSN:0035-8711
Additional Information:This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society © 2015 The Authors Published by Oxford University Press on behalf of Royal Astronomical Society. All rights reserved.
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/mnras/stv937
Other Identification Number:arXiv:1501.04632v2

Download

Download PDF  'Galaxies that shine: radiation-hydrodynamical simulations of disc galaxies'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 6MB
View at publisher
Download PDF  'Galaxies that shine: radiation-hydrodynamical simulations of disc galaxies'.
Preview
Content: Published Version
Filetype: PDF
Size: 4MB