Header

UZH-Logo

Maintenance Infos

Dark matter searches


Baudis, Laura (2015). Dark matter searches. Annalen der Physik, 528(1-2):74-83.

Abstract

One of the major challenges of modern physics is to decipher the nature of dark matter. Astrophysical observations provide ample evidence for the existence of an invisible and dominant mass component in the observable universe, from the scales of galaxies up to the largest cosmological scales. The dark matter could be made of new, yet undiscovered elementary particles, with allowed masses and interaction strengths with normal matter spanning an enormous range. Axions, produced non-thermally in the early universe, and weakly interacting massive particles (WIMPs), which froze out of thermal equilibrium with a relic density matching the observations, represent two well-motivated, generic classes of dark matter candidates. Dark matter axions could be detected by exploiting their predicted coupling to two photons, where the highest sensitivity is reached by experiments using a microwave cavity permeated by a strong magnetic field. WIMPs could be directly observed via scatters off atomic nuclei in underground, ultra low-background detectors, or indirectly, via secondary radiation produced when they pair annihilate. They could also be generated at particle colliders such as the LHC, where associated particles produced in the same process are to be detected. After a brief motivation and an introduction to the phenomenology of particle dark matter detection, I will discuss the most promising experimental techniques to search for axions and WIMPs, addressing their current and future science reach, as well as their complementarity.

Abstract

One of the major challenges of modern physics is to decipher the nature of dark matter. Astrophysical observations provide ample evidence for the existence of an invisible and dominant mass component in the observable universe, from the scales of galaxies up to the largest cosmological scales. The dark matter could be made of new, yet undiscovered elementary particles, with allowed masses and interaction strengths with normal matter spanning an enormous range. Axions, produced non-thermally in the early universe, and weakly interacting massive particles (WIMPs), which froze out of thermal equilibrium with a relic density matching the observations, represent two well-motivated, generic classes of dark matter candidates. Dark matter axions could be detected by exploiting their predicted coupling to two photons, where the highest sensitivity is reached by experiments using a microwave cavity permeated by a strong magnetic field. WIMPs could be directly observed via scatters off atomic nuclei in underground, ultra low-background detectors, or indirectly, via secondary radiation produced when they pair annihilate. They could also be generated at particle colliders such as the LHC, where associated particles produced in the same process are to be detected. After a brief motivation and an introduction to the phenomenology of particle dark matter detection, I will discuss the most promising experimental techniques to search for axions and WIMPs, addressing their current and future science reach, as well as their complementarity.

Statistics

Citations

7 citations in Web of Science®
6 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 12 Feb 2016
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Language:English
Date:2015
Deposited On:12 Feb 2016 13:58
Last Modified:05 Apr 2016 20:05
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0003-3804
Publisher DOI:https://doi.org/10.1002/andp.201500114

Download