Header

UZH-Logo

Maintenance Infos

Cerebrovascular reactivity is increased with acclimatization to 3,454 m altitude


Flück, Daniela; Siebenmann, Christoph; Keiser, Stefanie; Cathomen, Adrian; Lundby, Carsten (2015). Cerebrovascular reactivity is increased with acclimatization to 3,454 m altitude. Journal of Cerebral Blood Flow and Metabolism, 35(8):1323-1330.

Abstract

Controversy exists regarding the effect of high-altitude exposure on cerebrovascular CO2 reactivity (CVR). Confounding factors in previous studies include the use of different experimental approaches, ascent profiles, duration and severity of exposure and plausibly environmental factors associated with altitude exposure. One aim of the present study was to determine CVR throughout acclimatization to high altitude when controlling for these. Middle cerebral artery mean velocity (MCAv mean) CVR was assessed during hyperventilation (hypocapnia) and CO2 administration (hypercapnia) with background normoxia (sea level (SL)) and hypoxia (3,454 m) in nine healthy volunteers (26 ± 4 years (mean ± s.d.)) at SL, and after 30 minutes (HA0), 3 (HA3) and 22 (HA22) days of high-altitude (3,454 m) exposure. At altitude, ventilation was increased whereas MCAv mean was not altered. Hypercapnic CVR was decreased at HA0 (1.16% ± 0.16%/mm Hg, mean ± s.e.m.), whereas both hyper- and hypocapnic CVR were increased at HA3 (3.13% ± 0.18% and 2.96% ± 0.10%/mm Hg) and HA22 (3.32% ± 0.12% and 3.24% ± 0.14%/mm Hg) compared with SL (1.98% ± 0.22% and 2.38% ± 0.10%/mm Hg; P < 0.01) regardless of background oxygenation. Cerebrovascular conductance (MCAv mean/mean arterial pressure) CVR was determined to account for blood pressure changes and revealed an attenuated response. Collectively our results show that hypocapnic and hypercapnic CVR are both elevated with acclimatization to high altitude.

Abstract

Controversy exists regarding the effect of high-altitude exposure on cerebrovascular CO2 reactivity (CVR). Confounding factors in previous studies include the use of different experimental approaches, ascent profiles, duration and severity of exposure and plausibly environmental factors associated with altitude exposure. One aim of the present study was to determine CVR throughout acclimatization to high altitude when controlling for these. Middle cerebral artery mean velocity (MCAv mean) CVR was assessed during hyperventilation (hypocapnia) and CO2 administration (hypercapnia) with background normoxia (sea level (SL)) and hypoxia (3,454 m) in nine healthy volunteers (26 ± 4 years (mean ± s.d.)) at SL, and after 30 minutes (HA0), 3 (HA3) and 22 (HA22) days of high-altitude (3,454 m) exposure. At altitude, ventilation was increased whereas MCAv mean was not altered. Hypercapnic CVR was decreased at HA0 (1.16% ± 0.16%/mm Hg, mean ± s.e.m.), whereas both hyper- and hypocapnic CVR were increased at HA3 (3.13% ± 0.18% and 2.96% ± 0.10%/mm Hg) and HA22 (3.32% ± 0.12% and 3.24% ± 0.14%/mm Hg) compared with SL (1.98% ± 0.22% and 2.38% ± 0.10%/mm Hg; P < 0.01) regardless of background oxygenation. Cerebrovascular conductance (MCAv mean/mean arterial pressure) CVR was determined to account for blood pressure changes and revealed an attenuated response. Collectively our results show that hypocapnic and hypercapnic CVR are both elevated with acclimatization to high altitude.

Statistics

Citations

2 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 23 Feb 2016
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology

04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:August 2015
Deposited On:23 Feb 2016 17:05
Last Modified:27 Mar 2017 08:43
Publisher:Nature Publishing Group
ISSN:0271-678X
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/jcbfm.2015.51
PubMed ID:25806704

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 438kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations