Header

UZH-Logo

Maintenance Infos

Hemoglobin mass and intravascular volume kinetics during and after exposure to 3,454-m altitude


Siebenmann, C; Cathomen, A; Hug, M; Keiser, S; Lundby, A K; Hilty, M P; Goetze, J P; Rasmussen, P; Lundby, C (2015). Hemoglobin mass and intravascular volume kinetics during and after exposure to 3,454-m altitude. Journal of Applied Physiology, 119(10):1194-1201.

Abstract

High altitude (HA) exposure facilitates a rapid contraction of plasma volume (PV) and a slower occurring expansion of hemoglobin mass (Hbmass). The kinetics of the Hbmass expansion has never been examined by multiple repeated measurements, and this was our primary study aim. The second aim was to investigate the mechanisms mediating the PV contraction. Nine healthy, normally trained sea-level (SL) residents (8 males, 1 female) sojourned for 28 days at 3,454 m. Hbmass was measured and PV was estimated by carbon monoxide rebreathing at SL, on every 4th day at HA, and 1 and 2 wk upon return to SL. Four weeks at HA increased Hbmass by 5.26% (range 2.5-11.1%; P < 0.001). The individual Hbmass increases commenced with up to 12 days of delay and reached a maximal rate of 4.04 ± 1.02 g/day after 14.9 ± 5.2 days. The probability for Hbmass to plateau increased steeply after 20-24 days. Upon return to SL Hbmass decayed by -2.46 ± 2.3 g/day, reaching values similar to baseline after 2 wk. PV, aldosterone concentration, and renin activity were reduced at HA (P < 0.001) while the total circulating protein mass remained unaffected. In summary, the Hbmass response to HA exposure followed a sigmoidal pattern with a delayed onset and a plateau after ∼3 wk. The decay rate of Hbmass upon descent to SL did not indicate major changes in the rate of erythrolysis. Moreover, our data support that PV contraction at HA is regulated by the renin-angiotensin-aldosterone axis and not by changes in oncotic pressure.

Abstract

High altitude (HA) exposure facilitates a rapid contraction of plasma volume (PV) and a slower occurring expansion of hemoglobin mass (Hbmass). The kinetics of the Hbmass expansion has never been examined by multiple repeated measurements, and this was our primary study aim. The second aim was to investigate the mechanisms mediating the PV contraction. Nine healthy, normally trained sea-level (SL) residents (8 males, 1 female) sojourned for 28 days at 3,454 m. Hbmass was measured and PV was estimated by carbon monoxide rebreathing at SL, on every 4th day at HA, and 1 and 2 wk upon return to SL. Four weeks at HA increased Hbmass by 5.26% (range 2.5-11.1%; P < 0.001). The individual Hbmass increases commenced with up to 12 days of delay and reached a maximal rate of 4.04 ± 1.02 g/day after 14.9 ± 5.2 days. The probability for Hbmass to plateau increased steeply after 20-24 days. Upon return to SL Hbmass decayed by -2.46 ± 2.3 g/day, reaching values similar to baseline after 2 wk. PV, aldosterone concentration, and renin activity were reduced at HA (P < 0.001) while the total circulating protein mass remained unaffected. In summary, the Hbmass response to HA exposure followed a sigmoidal pattern with a delayed onset and a plateau after ∼3 wk. The decay rate of Hbmass upon descent to SL did not indicate major changes in the rate of erythrolysis. Moreover, our data support that PV contraction at HA is regulated by the renin-angiotensin-aldosterone axis and not by changes in oncotic pressure.

Statistics

Citations

Dimensions.ai Metrics
31 citations in Web of Science®
29 citations in Scopus®
26 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 23 Feb 2016
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology

04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:15 November 2015
Deposited On:23 Feb 2016 17:09
Last Modified:18 Apr 2018 11:47
Publisher:American Physiological Society
ISSN:0161-7567
Funders:Swiss National Science Foundation (Grant 320030_143745), Zürich Center for Integrative Human Physiology
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1152/japplphysiol.01121.2014
PubMed ID:25749449
Project Information:
  • : FunderSNSF
  • : Grant ID
  • : Project TitleSwiss National Science Foundation (Grant 320030_143745)
  • : Funder
  • : Grant ID
  • : Project TitleZürich Center for Integrative Human Physiology

Download