Header

UZH-Logo

Maintenance Infos

Homeostatic Control of Presynaptic Neurotransmitter Release


Davis, Graeme W; Müller, Martin (2015). Homeostatic Control of Presynaptic Neurotransmitter Release. Annual Review of Physiology, 77(1):251-270.

Abstract

It is well established that the active properties of nerve and muscle cells are stabilized by homeostatic signaling systems. In organisms ranging from Drosophila to humans, neurons restore baseline function in the continued presence of destabilizing perturbations by rebalancing ion channel expression, modifying neurotransmitter receptor surface expression and trafficking, and modulating neurotransmitter release. This review focuses on the homeostatic modulation of presynaptic neurotransmitter release, termed presynaptic homeostasis. First, we highlight criteria that can be used to define a process as being under homeostatic control. Next, we review the remarkable conservation of presynaptic homeostasis at the Drosophila, mouse, and human neuromuscular junctions and emerging parallels at synaptic connections in the mammalian central nervous system. We then highlight recent progress identifying cellular and molecular mechanisms. We conclude by reviewing emerging parallels between the mechanisms of homeostatic signaling and genetic links to neurological disease.

Abstract

It is well established that the active properties of nerve and muscle cells are stabilized by homeostatic signaling systems. In organisms ranging from Drosophila to humans, neurons restore baseline function in the continued presence of destabilizing perturbations by rebalancing ion channel expression, modifying neurotransmitter receptor surface expression and trafficking, and modulating neurotransmitter release. This review focuses on the homeostatic modulation of presynaptic neurotransmitter release, termed presynaptic homeostasis. First, we highlight criteria that can be used to define a process as being under homeostatic control. Next, we review the remarkable conservation of presynaptic homeostasis at the Drosophila, mouse, and human neuromuscular junctions and emerging parallels at synaptic connections in the mammalian central nervous system. We then highlight recent progress identifying cellular and molecular mechanisms. We conclude by reviewing emerging parallels between the mechanisms of homeostatic signaling and genetic links to neurological disease.

Statistics

Citations

36 citations in Web of Science®
37 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 25 Feb 2016
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:February 2015
Deposited On:25 Feb 2016 08:11
Last Modified:05 Apr 2016 20:10
Publisher:Annual Reviews
ISSN:0066-4278
Publisher DOI:https://doi.org/10.1146/annurev-physiol-021014-071740

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 878kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations