Header

UZH-Logo

Maintenance Infos

Physicomechanical characterization of polyetheretherketone and current esthetic dental CAD/CAM polymers after aging in different storage media


Liebermann, Anja; Wimmer, Timea; Schmidlin, Patrick R; Scherer, Harry; Löffler, Patrick; Roos, Malgorzata; Stawarczyk, Bogna (2016). Physicomechanical characterization of polyetheretherketone and current esthetic dental CAD/CAM polymers after aging in different storage media. Journal of Prosthetic Dentistry, 115(3):321-328.

Abstract

STATEMENT OF PROBLEM: Polyetheretherketone (PEEK) can be used to support fixed dental prostheses. However, information about physicomechanical characterization is still scarce.
PURPOSE: The purpose of this in vitro study was to assess effects of different aging regimens/durations on roughness, solubility, water absorption, Martens hardness (HM), and indentation modulus/EIT on different computer-aided design and computer-aided manufacturing (CAD/CAM) polymers.
MATERIAL AND METHODS: Forty standardized specimens of the following materials were fabricated: PEEK: Dentokeep (DK); hybrid material: VITA Enamic (EN); composite resins: LAVA Ultimate (LU) and an experimental CAD/CAM nanohybrid-composite resin (EX); poly(methyl methacrylate) (PMMA)-based: VITA CAD-Temp (CT); Telio CAD (TC), artBloc Temp (AT), and ZENOTEC ProFix (ZP). A nanofilled-polymer for interim restorations, Protemp 4 (CG), served as the control group. Specimens were stored in sodium chloride, artificial saliva, physiological saliva, and distilled water at 37°C for 1, 7, 14, 28, 90, and 180 days. Roughness, water absorption, HM, and EIT were investigated after each storage period; solubility was determined after 180 days only. Data were analyzed using weighted 3/2/1-way ANOVA and the post hoc Scheffé tests (α=.05).
RESULTS: Storage media had no effect on surface roughness and water absorption. Physiological saliva revealed the highest significant impact on solubility followed by artificial saliva, sodium chloride, and distilled water. Water absorption increased significantly with storage duration. PEEK showed the lowest solubility and water absorption values. The highest solubility was observed for the conventional polymer CG, and the highest water absorption was found for the composite LU. PMMA-based TC, ZP, CG, and AT showed the lowest HM and indentation modulus, followed by CT, and PEEK. The highest values were observed for the hybrid material EN, followed by LU and EX.
CONCLUSIONS: The hardness parameters of PEEK were comparable with those of PMMA-based materials.

Abstract

STATEMENT OF PROBLEM: Polyetheretherketone (PEEK) can be used to support fixed dental prostheses. However, information about physicomechanical characterization is still scarce.
PURPOSE: The purpose of this in vitro study was to assess effects of different aging regimens/durations on roughness, solubility, water absorption, Martens hardness (HM), and indentation modulus/EIT on different computer-aided design and computer-aided manufacturing (CAD/CAM) polymers.
MATERIAL AND METHODS: Forty standardized specimens of the following materials were fabricated: PEEK: Dentokeep (DK); hybrid material: VITA Enamic (EN); composite resins: LAVA Ultimate (LU) and an experimental CAD/CAM nanohybrid-composite resin (EX); poly(methyl methacrylate) (PMMA)-based: VITA CAD-Temp (CT); Telio CAD (TC), artBloc Temp (AT), and ZENOTEC ProFix (ZP). A nanofilled-polymer for interim restorations, Protemp 4 (CG), served as the control group. Specimens were stored in sodium chloride, artificial saliva, physiological saliva, and distilled water at 37°C for 1, 7, 14, 28, 90, and 180 days. Roughness, water absorption, HM, and EIT were investigated after each storage period; solubility was determined after 180 days only. Data were analyzed using weighted 3/2/1-way ANOVA and the post hoc Scheffé tests (α=.05).
RESULTS: Storage media had no effect on surface roughness and water absorption. Physiological saliva revealed the highest significant impact on solubility followed by artificial saliva, sodium chloride, and distilled water. Water absorption increased significantly with storage duration. PEEK showed the lowest solubility and water absorption values. The highest solubility was observed for the conventional polymer CG, and the highest water absorption was found for the composite LU. PMMA-based TC, ZP, CG, and AT showed the lowest HM and indentation modulus, followed by CT, and PEEK. The highest values were observed for the hybrid material EN, followed by LU and EX.
CONCLUSIONS: The hardness parameters of PEEK were comparable with those of PMMA-based materials.

Statistics

Citations

12 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

15 downloads since deposited on 10 Mar 2016
14 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Epidemiology, Biostatistics and Prevention Institute (EBPI)
04 Faculty of Medicine > Center for Dental Medicine > Clinic for Preventive Dentistry, Periodontology and Cariology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:March 2016
Deposited On:10 Mar 2016 17:38
Last Modified:01 Apr 2017 00:01
Publisher:Elsevier
ISSN:0022-3913
Publisher DOI:https://doi.org/10.1016/j.prosdent.2015.09.004
PubMed ID:26548869

Download

Preview Icon on Download
Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 844kB
View at publisher
Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 556kB
Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations