Header

UZH-Logo

Maintenance Infos

The dual frequency RV-coupling coefficient: a novel measure for quantifying cross-frequency information transactions in the brain


Pascual-Marqui, R D; Faber, Pascal L; Kinoshita, T; Kitaura, Y; Kochi, Kieko; Milz, Patricia; Nishida, K; Yoshimura, M (2016). The dual frequency RV-coupling coefficient: a novel measure for quantifying cross-frequency information transactions in the brain. Quantitative Biology > Neurons and Cognition 1603, University of Zurich.

Abstract

Identifying dynamic transactions between brain regions has become increasingly important. Measurements within and across brain structures, demonstrating the occurrence of bursts of beta/gamma oscillations only during one specific phase of each theta/alpha cycle, have motivated the need to advance beyond linear and stationary time series models. Here we offer a novel measure, namely, the "dual frequency RV-coupling coefficient", for assessing different types of frequency-frequency interactions that subserve information flow in the brain. This is a measure of coherence between two complex-valued vectors, consisting of the set of Fourier coefficients for two different frequency bands, within or across two brain regions. RV-coupling is expressed in terms of instantaneous and lagged components. Furthermore, by using normalized Fourier coefficients (unit modulus), phase-type couplings can also be measured. The dual frequency RV-coupling coefficient is based on previous work: the second order bispectrum, i.e. the dual-frequency coherence (Thomson 1982; Haykin & Thomson 1998); the RV-coefficient (Escoufier 1973); Gorrostieta et al (2012); and Pascual-Marqui et al (2011). This paper presents the new measure, and outlines relevant statistical tests. The novel aspects of the "dual frequency RV-coupling coefficient" are: (1) it can be applied to two multivariate time series; (2) the method is not limited to single discrete frequencies, and in addition, the frequency bands are treated by means of appropriate multivariate statistical methodology; (3) the method makes use of a novel generalization of the RV-coefficient for complex-valued multivariate data; (4) real and imaginary covariance contributions to the RV-coherence are obtained, allowing the definition of a "lagged-coupling" measure that is minimally affected by the low spatial resolution of estimated cortical electric neuronal activity.

Abstract

Identifying dynamic transactions between brain regions has become increasingly important. Measurements within and across brain structures, demonstrating the occurrence of bursts of beta/gamma oscillations only during one specific phase of each theta/alpha cycle, have motivated the need to advance beyond linear and stationary time series models. Here we offer a novel measure, namely, the "dual frequency RV-coupling coefficient", for assessing different types of frequency-frequency interactions that subserve information flow in the brain. This is a measure of coherence between two complex-valued vectors, consisting of the set of Fourier coefficients for two different frequency bands, within or across two brain regions. RV-coupling is expressed in terms of instantaneous and lagged components. Furthermore, by using normalized Fourier coefficients (unit modulus), phase-type couplings can also be measured. The dual frequency RV-coupling coefficient is based on previous work: the second order bispectrum, i.e. the dual-frequency coherence (Thomson 1982; Haykin & Thomson 1998); the RV-coefficient (Escoufier 1973); Gorrostieta et al (2012); and Pascual-Marqui et al (2011). This paper presents the new measure, and outlines relevant statistical tests. The novel aspects of the "dual frequency RV-coupling coefficient" are: (1) it can be applied to two multivariate time series; (2) the method is not limited to single discrete frequencies, and in addition, the frequency bands are treated by means of appropriate multivariate statistical methodology; (3) the method makes use of a novel generalization of the RV-coefficient for complex-valued multivariate data; (4) real and imaginary covariance contributions to the RV-coherence are obtained, allowing the definition of a "lagged-coupling" measure that is minimally affected by the low spatial resolution of estimated cortical electric neuronal activity.

Statistics

Downloads

14 downloads since deposited on 22 Mar 2016
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Working Paper
Communities & Collections:04 Faculty of Medicine > Psychiatric University Hospital Zurich > Clinic for Psychiatry, Psychotherapy, and Psychosomatics
04 Faculty of Medicine > The KEY Institute for Brain-Mind Research
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:17 March 2016
Deposited On:22 Mar 2016 16:36
Last Modified:08 Dec 2017 19:16
Series Name:Quantitative Biology > Neurons and Cognition
Number of Pages:14
Free access at:Related URL. An embargo period may apply.
Related URLs:http://arxiv.org/abs/1603.05343
Other Identification Number:arXiv:1603.05343 [q-bio.NC]

Download

Download PDF  'The dual frequency RV-coupling coefficient: a novel measure for quantifying cross-frequency information transactions in the brain'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 856kB
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)