Header

UZH-Logo

Maintenance Infos

Connectomic and surface-based morphometric correlates of acute mild traumatic brain injury


Dall'Acqua, Patrizia; Johannes, Sönke; Mica, Ladislav; Simmen, Hans-Peter; Glaab, Richard; Fandino, Javier; Schwendinger, Markus; Meier, Christoph; Ulbrich, Erika J; Müller, Andreas; Jäncke, Lutz; Hänggi, Jürgen (2016). Connectomic and surface-based morphometric correlates of acute mild traumatic brain injury. Frontiers in Human Neuroscience, 10:127.

Abstract

Reduced integrity of white matter (WM) pathways and subtle anomalies in gray matter (GM) morphology have been hypothesized as mechanisms in mild traumatic brain injury (mTBI). However, findings on structural brain changes in early stages after mTBI are inconsistent and findings related to early symptoms severity are rare. Fifty-one patients were assessed with multimodal neuroimaging and clinical methods exclusively within 7 days following mTBI and compared to 53 controls. Whole-brain connectivity based on diffusion tensor imaging was subjected to network-based statistics, whereas cortical surface area, thickness, and volume based on T1-weighted MRI scans were investigated using surface-based morphometric analysis. Reduced connectivity strength within a subnetwork of 59 edges located predominantly in bilateral frontal lobes was significantly associated with higher levels of self-reported symptoms. In addition, cortical surface area decreases were associated with stronger complaints in five clusters located in bilateral frontal and postcentral cortices, and in the right inferior temporal region. Alterations in WM and GM were localized in similar brain regions and moderately-to-strongly related to each other. Furthermore, the reduction of cortical surface area in the frontal regions was correlated with poorer attentive-executive performance in the mTBI group. Finally, group differences were detected in both the WM and GM, especially when focusing on a subgroup of patients with greater complaints, indicating the importance of classifying mTBI patients according to severity of symptoms. This study provides evidence that mTBI affects not only the integrity of WM networks by means of axonal damage but also the morphology of the cortex during the initial post-injury period. These anomalies might be greater in the acute period than previously believed and the involvement of frontal brain regions was consistently pronounced in both findings. The dysconnected subnetwork suggests that mTBI can be conceptualized as a dysconnection syndrome. It remains unclear whether reduced WM integrity is the trigger for changes in cortical surface area or whether tissue deformations are the direct result of mechanical forces acting on the brain. The findings suggest that rapid identification of high-risk patients with the use of clinical scales should be assessed acutely as part of the mTBI protocol.

Abstract

Reduced integrity of white matter (WM) pathways and subtle anomalies in gray matter (GM) morphology have been hypothesized as mechanisms in mild traumatic brain injury (mTBI). However, findings on structural brain changes in early stages after mTBI are inconsistent and findings related to early symptoms severity are rare. Fifty-one patients were assessed with multimodal neuroimaging and clinical methods exclusively within 7 days following mTBI and compared to 53 controls. Whole-brain connectivity based on diffusion tensor imaging was subjected to network-based statistics, whereas cortical surface area, thickness, and volume based on T1-weighted MRI scans were investigated using surface-based morphometric analysis. Reduced connectivity strength within a subnetwork of 59 edges located predominantly in bilateral frontal lobes was significantly associated with higher levels of self-reported symptoms. In addition, cortical surface area decreases were associated with stronger complaints in five clusters located in bilateral frontal and postcentral cortices, and in the right inferior temporal region. Alterations in WM and GM were localized in similar brain regions and moderately-to-strongly related to each other. Furthermore, the reduction of cortical surface area in the frontal regions was correlated with poorer attentive-executive performance in the mTBI group. Finally, group differences were detected in both the WM and GM, especially when focusing on a subgroup of patients with greater complaints, indicating the importance of classifying mTBI patients according to severity of symptoms. This study provides evidence that mTBI affects not only the integrity of WM networks by means of axonal damage but also the morphology of the cortex during the initial post-injury period. These anomalies might be greater in the acute period than previously believed and the involvement of frontal brain regions was consistently pronounced in both findings. The dysconnected subnetwork suggests that mTBI can be conceptualized as a dysconnection syndrome. It remains unclear whether reduced WM integrity is the trigger for changes in cortical surface area or whether tissue deformations are the direct result of mechanical forces acting on the brain. The findings suggest that rapid identification of high-risk patients with the use of clinical scales should be assessed acutely as part of the mTBI protocol.

Statistics

Citations

6 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

19 downloads since deposited on 25 Apr 2016
13 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Department of Trauma Surgery
04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
04 Faculty of Medicine > Center for Integrative Human Physiology
06 Faculty of Arts > Institute of Psychology
08 University Research Priority Programs > Dynamics of Healthy Aging
Dewey Decimal Classification:610 Medicine & health
Uncontrolled Keywords:DoktoratPsych Erstautor
Language:English
Date:2016
Deposited On:25 Apr 2016 16:22
Last Modified:08 Dec 2017 19:24
Publisher:Frontiers Research Foundation
ISSN:1662-5161
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.3389/fnhum.2016.00127
PubMed ID:27065831

Download

Download PDF  'Connectomic and surface-based morphometric correlates of acute mild traumatic brain injury'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 3MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)