Georg-Friedrich-Götz-Stiftung
Medizinische Fakultät der Universität Zürich

Georg-Friedrich-Götz-Preis
2013
Festschrift
Georg-Friedrich-Götz-Preis 2013

aus Anlass der Verleihung des Georg-Friedrich-Götz-Preises 2013

PD Dr. med. Mirjana Maiwald-Urosevic
»Immuntherapie: Des Hautlymphoms ärgster Feind?«

Prof. Dr. med. Sebastian Jessberger
»Adulte Neurogenese – wie neugebildete Nervenzellen die Struktur und Funktion des Gehirns beeinflussen«

4. April 2013
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Tagungsprogramm</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Georg Friedrich Götz</td>
<td>9</td>
</tr>
<tr>
<td>Laudationes</td>
<td>10</td>
</tr>
<tr>
<td>Die Preisträger 2013</td>
<td>15</td>
</tr>
<tr>
<td>Bisherige Preisträger</td>
<td>16</td>
</tr>
<tr>
<td>Immuntherapie: Des Hautlympoms ärgerster Feind?</td>
<td>33</td>
</tr>
<tr>
<td>Adul... Neurop...e - wie neug...bildete Nerv...zellen die Struktur und Funktion des Gehirns beeinflussen</td>
<td>47</td>
</tr>
</tbody>
</table>
Tagungsprogramm
Götz-Preisverleihung vom 4. April 2013
Grosser Hörsaal Ost, UniversitätsSpital Zürich

17.05 Uhr Begrüssung der Gäste durch Prof. Dr. Dr. Klaus W. Grätz, Dekan

17.15 Uhr Einführung und Würdigung des Preisträgers
Frau PD Dr. med. Mirjana Maiwald-Urosevic
durch Prof. Dr. Dr. Klaus W. Grätz, Dekan

17.20 Uhr Kurzreferat von PD Dr. med. Mirjana Maiwald-Urosevic,
Dermatologische Klinik, UniversitätsSpital Zürich

17.45 Uhr Einführung und Würdigung des Preisträgers
Prof. Dr. med. Sebastian Jessberger
durch Prof. Dr. Dr. Klaus W. Grätz, Dekan

17.50 Uhr Kurzreferat von Prof. Dr. med. Sebastian Jessberger,
Institut für Hirnforschung, Universität Zürich

18.15 Uhr Preisverleihung durch Prof. Dr. Andreas Fischer,
Rektor der Universität Zürich,
Präsident der Georg-Friedrich-Götz-Stiftung

18.20 Uhr Apéro
Georg Friedrich Götz
und die Gründung einer Stiftung für den Fortschritt in der Medizin

Georg Friedrich Götz wurde am 28. April 1893 in Frankfurt am Main geboren. Er war in mehreren Bereichen erfolgreich geschäftlich tätig, so bereits in jungen Jahren als Führer eines Tabakgeschäftes. Später betrieb er seine Firma MDF (Mittel-Deutsche-Fahrscheinfabrik) bei Frankfurt, wo Fahrscheine für Busse und Straßenbahnen gedruckt wurden.

Der erste »Georg Friedrich Götz-Preis« wurde 1969 an Professor Lindenmann vom Institut für Medizinische Mikrobiologie für seine Grundlagenforschungen über den Krebs verliehen.

Die Götz-Preis-Kommission, bestehend aus Herrn Prof. A. Aguzzi (Präsident), Frau Prof. A. Trkola und Herrn Prof. G. A. Spinas schlägt für den Götz-Preis 2013 folgende Kandidatin vor:

PD Dr. med. Mirjana Maiwald-Urosevic

Begründung

Für ihre Forschertätigkeit wurde sie mit renommierten Preisen ausgezeichnet, unter anderem der Auszeichnung als beste dermatologische Forscherin der Schweiz, sowie dem Roche-Preis der Schweizer Gesellschaft für Dermatologie und Venerologie.

Laudatio
Der Georg-Friedrich-Götz-Preis 2013 wird an PD Dr. med. Mirjana Maiwald-Urosevic verliehen in Anerkennung ihres Beitrags zur Krebsforschung.

Prof. Dr. Dr. K. W. Grätz
Dekan

Prof. Dr. A. Aguzzi
Präsident der Götz-Preis-Stiftung
Die Götz-Preis-Kommission, bestehend aus Herrn Prof. A. Aguzzi (Präsident), Frau Prof. A. Trkola und Herrn Prof. G. A. Spinas schlägt für den Götz-Preis 2013 folgenden Kandidaten vor:

Herrn Prof. Dr. med. Sebastian Jessberger

Begründung
Seit August 2012 ist Sebastian Jessberger Professor am Institut für Hirnforschung, nachdem er von 2007 bis 2012 Assistenzprofessor am Institut für Zellbiologie der ETH Zürich tätig war. Der Forschungs-Schwerpunkt seiner Arbeit liegt auf der stammzell-assoziierten Plastizität des adulten Gehirns.

Laudatio

Der Georg-Friederich-Götz-Preis 2013 wird an Prof. Dr. med. Sebastian Jessberger verliehen in Anerkennung seines Beitrags zur experimentellen Neurowissenschaft.

Prof. Dr. Dr. K.W. Grätz
Dekan

Prof. Dr. A. Aguzzi
Präsident der Götz-Preis-Stiftung
Die Preisträger 2013

PD Dr. med. Mirjana Maiwald-Urosevic,
Dermatologische Klinik,
UniversitätsSpital Zürich

Prof. Dr. med. Sebastian Jessberger,
Institut für Hirnforschung,
Universität Zürich
Bisherige Preisträger
des Georg Friedrich Götz-Preises

1969 Prof. Dr. Jean Lindenmann
Institut für Medizinische Mikrobiologie der Universität Zürich
»Grundlagenforschung über den Krebs«

1974 Prof. Dr. F. G. J. Hayhoe
Departement of Medicine, Cambridge University, England
»Leukämie und Lymphoma«

Prof. Dr. Werner Straub
Departement für Innere Medizin der Universität Zürich
»Entstehung und Vermeidung von Thrombosen«

Krankenhaus Bethanien, Zürich – einmaliger Beitrag

1975 Prof. Dr. Wilhelm Rutishauser
Departement für Innere Medizin der Universität Zürich
»Angiographische Analyse der Herzfunktion«

Prof. Dr. Hans Peter Krayenbühl
Departement für Innere Medizin der Universität Zürich
»Beziehung zwischen Parametern der Ventrikelkontraktilität und dem chronisch belasteten Myokard«

PD Dr. Marko Turina
Chirurgische Klinik A der Universität Zürich
»Entwicklung einer Herz-Lungenmaschine für Säuglinge und Kleinkinder«
1977 Prof. Dr. Alexander A. Borbély
Pharmakologisches Institut der Universität Zürich
»Schlaf- und Schlafrhythmen: Parallelen zwischen Ratte und Mensch«

PD Dr. Dominik Felix
Institut für Hirnforschung der Universität Zürich
»Peptide als mögliche Überträgersubstanzen im Nervensystem«

PD Dr. Volker Henn
Neurologische Klinik der Universität Zürich
»Bewegungswahrnehmung und neuronale Organisation der vestibulo-oculomotorischen Kontrollvorgänge«

PD Dr. Herbert M. Keller
Neurologische Klinik der Universität Zürich
»Doppler-Ultraschall-Verfahren zur nichtinvasiven Abklärung zerebraler Durchblutungsstörungen«

PD Dr. Gerd Niemeyer
Augenklinik der Universität Zürich
»Beiträge zum Verständnis der Netzhautfunktion«

1978 Prof. Dr. P. Deyhle
Departement für Innere Medizin der Universität Zürich
»Grundlegende Beiträge zur endoskopischen Diagnostik und Elektrochirurgie«
Bisherige Preisträger des Georg-Friedrich-Götz-Preises

PD Dr. Andreas Grüntzig
Departement für Innere Medizin der Universität Zürich
»Rekanalisation von Arterienstenosen mittels Dilatationskatheter – Erfahrungen mit Beinarterien und Herzkranzgefässen«

1979 **Dr. Ernst Rinderknecht**
Biochemisches Institut der Universität Zürich
»Isolierung und Strukturaufklärung von zwei insulinähnlichen Wachstumshormonen«

PD Dr. Jürgen L. Zapf
Departement für Innere Medizin der Universität Zürich
»Wirkungsweise von zwei insulinähnlichen Wachstumshormonen und Entdeckung des spezifischen Trägereiweisses dieser Hormone«

1980 **Prof. Dr. Jan A. Fischer**
Orthopädische Klinik der Universität Zürich
»Nachweis der differenziert regulierenden Wirkung von extrazellulärem Kalzium und Magnesium auf die Sekretion von Parathyreoidhormon«

Prof. Dr. Marcus C. Schaub
Pharmakologisches Institut der Universität Zürich
»Beiträge zum Verständnis der Funktionen der Regulationseiweisse und der Ca-Ionen bei der Muskelkontraktion«

PD Dr. P. Rüegsegger
Institut für Biomedizinische Technik der Universität und der ETH Zürich
»Erleichterung der Osteoporoseforschung durch Entwicklung computertomographischer Verfahren für die Erfassung von graduellen Veränderungen in der Knochenmineralisation«
1981 Ass. Prof. Dr. med. H. Binz
Institut für Immunologie und Virologie der Universität Zürich
»Beiträge zur Charakterisierung des T-Zell-Rezeptors und zum Verständnis der Regulation der Immunantwort«

PD Dr. med. Peter Grob
Departement für Innere Medizin, Klinische Immunologie der Universität Zürich
»Zahlreiche Beiträge zur klinischen Immunologie«

1982 PD Dr. med. Beat Steinmann
Stoffwechselabteilung Universitäts-Kinderklinik Zürich
»Erbkrankheiten des Bindegewebes-Modelle für das Verständnis erworbener Störungen«

PD Dr. med. Rainer Otto
Röntgendiagnostisches Zentralinstitut UniversitätsSpital Zürich
»Krebsdiagnostik im Abdomen mittels Ultraschall und Computertomographie«

PD Dr. med. Gino Pedio
Abt. Zytologie, Institut für Pathologie UniversitätsSpital Zürich
»Die Wertigkeit der Feinnadelbiopsie in der Krebsdiagnostik«

PD Dr. med. Felix Walz
Gerichtlich-Medizinisches Institut der Universität Zürich
»Fussgängerverletzungen in Zürich bei Tempo 60 und während des Versuchs ›Tempo 50‹«
Bisherige Preisträger des Georg-Friedrich-Götz-Preises

PD Dr. sc. techn. Peter Niederer
Institut für Biomedizinische Technik der Universität und ETH Zürich
»Kollisionsablauf und Schweregrad der Fussgängerunfälle bei 35 und 25 km/h Aufprallgeschwindigkeit«

PD Dr. med. Viktor Meyer
Abteilung Chirurgie der Hand und peripheren Nerven Universitätsspital Zürich
»Heutiger Stand der mikrochirurgischen Rekonstruktion peripherer Nerven«

1983 **PD Dr. med. Adriano Fontana**
Departement für Innere Medizin, Klinische Immunologie der Universität Zürich
»Wegweisende Beiträge zur Neuroimmunologie«

PD Dr. med. Ruedi Lüthy
Abteilung für Infektionskrankheiten Medizinische Poliklinik Universitätsspital Zürich
»Wissenschaftliche und klinische Beiträge zur Chemotherapie von Infektionskrankheiten«

1984 **PD Dr. med. Helmut L. Haas**
Neurochirurgische Klinik UniversitätsSpital Zürich
»Die epileptische Nervenzelle«

PD Dr. phil. Manuel Hulliger
Institut für Hirnforschung der Universität Zürich
»Zur Bedeutung der Fussmotorik bei natürlichen Bewegungen«
Prof. Dr. med. Alex M. Landolt
Neurochirurgische Klinik UniversitätsSpital Zürich
»Hypophysenadenome – zellbiologische Modelle zwischen Endokrinologie und Neurochirurgie«

1985 Prof. Dr. sc. nat. Thomas Bächli
Institut für Immunologie und Virologie der Universität Zürich
»Strukturelle und funktionelle Charakterisierung von Viren«

Prof. Dr. med. Peter St. Groscurth
Anatomisches Institut, Abteilung Zellbiologie der Universität Zürich
»Morphologie der durch T-Lymphozyten und Makrophagen vermittelten Zytolyse«

1986 PD Dr. sc. nat. Hans Hengartner
Institut für Pathologie der Universität Zürich
»Die durch T-Lymphozyten vermittelte Immunantwort: Antigenerkennung und Effektormechanismus«

PD Dr. med. Reinhard A. Seger
Medizinische Klinik, Kinderspital Zürich
»Kongenitale Erkrankungen des Phagozytose-Systems: Ihr Beitrag zum Verständnis der Infektabwehr«

1987 PD Dr. med. dent. Werner-Hans Mörmann
Zahnärztliches Institut der Universität Zürich
»Computer-unterstützte Zahnrestaurationen mit Keramik- und Kunststoffmaterialien«
1988 *PD Dr. phil. II Peter Bösiger*
Institut für Biomedizinische Technik und Medizinische Informatik der Universität und ETH Zürich
»Kernspintomographische Erfassung von Gewebeveränderungen und Organfunktionen«

22 *Prof. Dr. med. Anton Valavanis*
Leiter der Abteilung für Neuroradiologie, Departement Medizinische Radiologie des UniversitätsSpitals Zürich
»Fortschritte in der Diagnostischen und Interventionellen Neuroradiologie«

1990 *Prof. Dr. med. Otto M. U. Hess*
Departement für Innere Medizin Medizinische Poliklinik, Kardiologie des UniversitätsSpitals Zürich
»Koronare Vasomotorik und Myokardperfusion«

PD Dr. med. Peter Josef Meier-Abt
Abteilung für Klinische Pharmakologie Medizinische Klinik des UniversitätsSpitals
»Hepatozelluläre Transportsysteme und deren Bedeutung für die Ausscheidung von Arzneimitteln in die Galle«

1991 *PD Dr. med. Ludwig Karl von Segesser*
Departement für Chirurgie, UniversitätsSpital Zürich
»Gefahrlose Herz-Lungenmaschine?«

Prof. Dr. med. Peter Sonderegger
Biochemisches Institut, Universität Zürich
»Molekulare Analyse des Axonwachstums«
1992
Frau Prof. Dr. med. Charlotte Elisabeth Remé
Augenklinik, UniversitätsSpital Zürich
»Wo viel Licht, da viel Schaden: Lichtwirkungen und Lichtschäden in der Netzhaut«

Dr. sc. nat. ETH Hanspeter Pircher
Departement Pathologie, UniversitätsSpital Zürich
»Immunologische Reaktivität und Toleranz von T-Lymphozyten analysiert in transgenen Tiermodellen«

1993
Frau PD Dr. med. Leena Bruckner-Tudermann
Westfälische Wilhelms-Universität Münster
»Genetisch bedingte Hautblasen: Ein Naturexperiment zum Zusammenwirken zwischen Epithel und Mesenchym«

Prof. Dr. med. Manfred Frey
Klinik für Wiederherstellungschirurgie UniversitätsSpital Zürich
»Das Lächeln: Chirurgische Rekonstruktion und Quantifizierung«

1994
PD Dr. Ulrich Klaus Franzeck
Departement für Innere Medizin, Abteilung Angiologie, UniversitätsSpital Zürich
»Transkutane Sauerstoffpartialdruckmessungen bei peripheren Durchblutungsstörungen«

PD Dr. Christoph Schmid
Departement für Innere Medizin, Abteilung Endokrinologie und Stoffwechsel, UniversitätsSpital Zürich
»IGF I als endokrin und parakrin gesteuerter und wirksamer Wuchs- und Differenzierungsfaktor des Knochens«
Bisherige Preisträger des Georg-Friedrich-Götz-Preises

1995 **PD Dr. rer. nat. Graeme McKinnon**
Magnetresonanz-Zentrum, UniversitätsSpital Zürich
»Temperature Monitoring and Interventional Device Positioning in Magnetic Resonance Imaging«

PD Dr. med. Andrea Superti-Furga
Abteilung für Stoffwechsel- und Molekularkrankheiten
Universitäts-Kinderklinik
»Es muss nicht immer Kollagen sein: Chondrodysplasien und Sulfatstoffwechsel«

1996 **PD Dr. Christine Bandtlow**
Institut für Hirnforschung, Universität Zürich
»Wirkungsmechanismen von Hemmstoffen des Nervenfaserwachstums im Gehirn: ein Blick hinter die Kulissen«

PD Dr. Norbert Dillier
Klinik für Ohren-, Nasen- Hals- und Gesichtschirurgie, UniversitätsSpital Zürich
»Auf der Suche nach der optimalen Sprachcodierung für Cochlear Implants«

1997 **PD Dr. Paul Komminoth**
Departement Pathologie, UniversitätsSpital Zürich
»Pluriglanduläre, genetisch bedingte, endokrine Neoplasien: von der Morphologie zur Molekulargenetik«

PD Dr. Jean-Marc Fritschy
Institut für Pharmakologie, Universität Zürich
»Struktur und Regulation von Neurotransmitter-Rezeptoren«
1998
PD Dr. Martin Meuli
Kinderspital Zürich
»Fetal Surgery for Myelomeningocele«

PD Dr. Dominik Straumann
Neurologische Klinik, UniversitätsSpital Zürich
»When Nerve Cells Bounce out of Control ... Instability of the Saccadic Systems after Deafferentiation from the Omnipause Neurons«

1999
PD Dr. Thomas Kündig
Dermatologische Klinik, UniversitätsSpital Zürich
»Verfahren zur Steigerung der Immunogenität von Impfstoffen«

2000
PD DR. med. vet. Max Gassmann
Physiologisches Institut, Universität Zürich
»Sauerstoffmangel und Erythropoietin«

Prof. Dr. med. Hans-Uwe Simon
Pharmakologisches Institut, Universität Bern
»Regulation of eosinophil and neutrophil apoptosis – similarities and differences«

PD Dr. med. Franz Vollenweider
Psychiatrische Universitätsklinik Zürich
»Halluzinationen und Gehirn«
Bisherige Preisträger des Georg-Friedrich-Götz-Preises

2001 Dr. phil. nat. Thierry Hennet
Physiologisches Institut, Universität Zürich
»Kongeniale Defekte der Glykolysierung: von den Hefen zum Menschen«

Prof. Dr. med. Reinhard Dummer
Dermatologische Klinik, UniversitätsSpital Zürich
»Hauttumore verstehen und gezielt behandeln«

PD Dr. med. Uwe Rudolph
Institut für Pharmakologie und Toxikologie, Universität Zürich
»Eine neue Pharmakologie für Benzodiazepine«

2002 PD Dr. rer. nat. Jürgen Götz
Psychiatrische Universitätsklinik Zürich, Abteilung für Psychiatrische Forschung
»Die Alzheimer’sche Krankheit Wechselwirkung zwischen Tau und beta-Amyloid«

PD Dr. med. Farhad Hafezi
Augenklinik, UniversitätsSpital Zürich
»Molekular Mechanismen der Photorezeptoren Apoptose bei Netzhautdegenerationen: Lichtschäden als Modellansatz«

2003 PD Dr. med. Michael A. Grotzer
Universitäts-Kinderklinik Zürich, Abteilung für Neuro-Onkologie
»Neue therapeutische Konzepte für kindliche primitive neuroektodermale Hirntumoren«
PD Dr. med. Frank Ruschitzka
UniversitätsSpital Zürich, Abteilung Kardiologie
»Atherosklerose und rheumatoide Arthritis – Die Geschichte zweier Erkrankungen«

2004 Frau Dr. med. Anna Lauber-Biaso
Kinderspital Zürich, Abteilung Pädiatrische Endokrinologie
»Ein molekularer Weg zur Klärung des Diabetes beim Kind«

Prof. Dr. med. Gerd A. Kullak-Ublick
UniversitätsSpital Zürich, Abteilung für Klinische Pharmakologie und Toxikologie
»Rolle von nukleären Rezeptoren beim hepatischen und intestinalen Medikamententransport«

Prof. Dr. med. Marc Y. Donath
UniversitätsSpital Zürich, Abteilung für Endokrinologie und Diabetologie
»Insulinproduktion bei Übergewicht und Diabetes: Von der Adaptation zur Krankheit«

Dr. med. Markus Glatzel
UniversitätsSpital Zürich, Institut für Neuropathologie
»Neue Wege in der Diagnostik der Creutzfeldt-Jakob-Krankheit«

2005 Frau PD Dr. med. Silvia Marino
UniversitätsSpital Zürich, Institut für Klinische Pathologie
»Medulloblastome – Entwicklungsmechanismen ausser Kontrolle«
2006 PD Dr. med. Huldrych Günthard
UniversitätsSpital Zürich, Klinik für Infektionskrankheiten und Spitalhygiene
»Viral setpoint«: Interaktionen zwischen dem HI-Virus und seinem Wirt«

2007 PD Dr. med. Matthias Baumgartner
28
Universitäts-Kinderklinik Zürich, Abteilung Stoffwechsel und Molekulare Pädiatrie
»3-Methylcrotonyl-CoA-Carboxylase-Mangel – Von der Molekularen Basis zur Praxis im Neugeborenen-Screening«

Dr. sc. nat. ETH Klaas Martinus Pos
Universität Zürich, Physiologisches Institut der Epithelialtransport Abteilung
»Acriflavine resistance protein B – AcrB: Rotation und Peristaltik führen zu Antibiotika-Resistenz«

2008 Prof. Raimund Dutzler, PhD
Universität Zürich, Departement Biochemie
»Ionenkanäle, die elektrischen Schalter unserer Zellen«

Prof. Dr. med. Romeo Ricci
ETH Hönggerberg, Institut für Zellbiologie
»Zelluläre Stress-Signale und ihre Rolle in metabolischen und inflammatorischen Erkrankungen«
2009 **Dr. rer. nat. Mathias Florian Heikenwälder**
Institut für Neuropathologie, Universitätsspital Zürich
»Molekulare und zelluläre Mechanismen der Prionenvermehrung: Wie Prionen unser Immunsystem überlisten.«

Mickaël Lesurtel, MD, PhD
Klinischer Assistenzprofessor, Klinik für Viszeral- und Transplantationschirurgie, Universitätsspital Zürich
»Platelet-Derived Serotonin Mediates Liver Regeneration«

2010 **Prof. Dr. sc. nat. Lars Hangartner**
Institut für Medizinische Virologie, UniversitätsSpital Zürich
»Das Problem der Immunodominanz bei variablen Viren«

Dr. med. Mike Recher
Departement für Innere Medizin, UniversitätsSpital Zürich
»Einmarsch- und Rückzugsgebiete von Viren«

2011 **Prof. Dr. med. Onur Boyman**
Dermatologische Klinik und Poliklinik, UniversitätsSpital Zürich
»Neue Behandlungsansätze für Tumore und Autoimmunerkrankungen«

Dr. med., Dr. sc. nat. Ataman Sendoel
Institut für Molekulare Biologie, Universität Zürich
»Sauerstoff und der programmierte Zelltod«
Bisherige Preisträger des Georg-Friedrich-Götz-Preises

2012 Prof. Dr. rer. nat. Anne Müller
Institut für Molekulare Krebsforschung, Universität Zürich
»Die zwei Gesichter des Magenkrebsregers Helicobacter pylori«

Prof. Dr. Ulf Landmesser
Klinik für Kardiologie, UniversitätsSpital Zürich
»Koronare Herzerkrankung – ist High-Density Lipoprotein (HDL) ein neues Therapieziel?«

E) Abhängigkeit der Marker LYVE-1 von der Follow-up Biopsie (SS eMF)

F) Abhängigkeit der Marker PDPN von der Follow-up Biopsie (SS eMF)

CD4+Vβ+ Zellen
CD4+Vβ- Zellen
CD4 Kontrollen
Hautbiopsien

Versican
Versican
aquaporin 9

Versican Expression

Immuntherapie: Des Hautlymphoms ärgster Feind?

...und Blutbeteiligung rasant auf 20 % ab. Das Sézary-Syndrom wird heute als leukämische Verlaufsform des kutanen T-Zell-Lymphoms verstanden und hat demzufolge eine schlechtere Prognose. Die B-Zell-Lymphome präsentieren sich hingegen mit isolierten, knotigen Läsionen in den für jenes Lymphom typischen Körperarealen. Während sich die Mehrzahl der CTCL von »skin-homing«-T-Lymphozyten ableiten lässt, die unter physiologischen Bedingungen durch die Haut zirkulieren und dort ebenfalls anzufinden sind, sind B-Zellen in der Haut kaum auffindbar.1,2

Kutane Lymphome können aller Wahrscheinlichkeit nach als Folge eines in mehreren Schritten ablaufenden, verschiedenen und teilweise voneinander unabhängigen Entartungsprozesses angesehen werden.2,3,4 Am Anfang steht vermutlich ein (hyper-) reaktiver, entzündlicher Vorgang, ausgelöst durch verschiedene chronische Stimuli, die genetischer, immunologischer aber auch umweltbedingter und infektiöser Natur sein können. Mit dem Fortschreiten der Erkrankung scheinen sich kutane Lymphome, insbesondere CTCL, ein Th2-Phänotyp mit Hauptproduktion von Interleukin-10, und anderen immuneindämmenden Zytokinen zu entwickeln. Diese an sich können die Expression weiterer inhibierender Moleküle, wie des HLA-G, eines nicht klassischen HLA-I-Rezeptors,5,6 fördern. Unsere Untersuchungen legten dar, dass fortgeschrittene CTCL und aggressive CBCL durch die Produktion von Interleukin-10 die HLA-G-Expression an der Zelloberfläche verstärken und somit eine Inhibition sowie Umgehung der Immunantwort vermitteln können.7

Obwohl eine Reihe von Chromosomenanomalien und anderer genetischer Veränderungen der neoplastischen Lymphozytenpopulationen beschrieben worden sind, bleiben die den kutanen Lymphomen zu Grunde liegenden Mechanismen bis heute ungeklärt.2,4 Die genetischen Aberrationen, die Störung des Gleichgewichts zwischen Chemokinen, lokalen Wachstumsfaktoren und deren Rezeptoren, die die vermehrte Einwanderung von Tumorzellen in die Haut und möglicherweise die Gefässneubildung steuern, prägen die Pathogenese mancher Hautlymphom-Typen. Bei vielen Tumorarten des Men-
Immuntherapie: Des Hautlymphoms ärgster Feind?

schen konnte ein kausales Verhältnis zwischen der tumor-induzierten Neu-­

Bei den kutanen Lymphomen wird die Diagnose durch eine Kombination anamnestischer und klinischer Merkmale sowie histomorphologischer und immunphänotypischer Daten und molekularer Befunde gestellt. Lange Zeit bestand für die Kliniker das Dilemma, die Hautlymphome korrekt ein-­ und zuzuordnen, da ganz unterschiedlichen Nomenklaturen existierten, die einem weltweit einheitlichen Grundverständ-
Typ-I und Typ-II IFN-Antwort

Prädiktoren
MxA Protein
MXA / CD4
MXB / CD4
UBE2L6 / CD4
CXCL11 / CD4
IFITM1 / CD4
STAT1 / CD4
STAT2 / CD4
IFN-γ / CD4
Transgene IFN-γ / CD4

nis kutaner Lymphome entgegengenommen. Mit der Veröffentlichung der EORTC-WHO-Klassifikation kutaner T- und B-Zell-Lymphome im Mai 2005 begann eine neue Ära im Verständnis dieser so verschiedenartigen Erkrankungsgruppe.10

In den letzten Jahren ist man zu der Erkenntnis gelangt, dass frühe aggressive Chemotherapien die Ansprechrate und das Gesamtüberleben der Patienten mit CTCL nicht verbessern.11 Dies führte zu einem Paradigmenwechsel, sodass die zytotoxischen Ansätze mangels kurativer Therapieoptionen nach heutigem Wissenstand minimiert werden sollen. Dementsprechend berücksichtigen moderne, zeitgemässe Therapieempfehlungen die Klassifikation und die Stadieneinteilung der kutanen Lymphome um ein, über längere Zeit betrachtet, bestmögliches und Lebensqualität-erhaltendes therapeutisches Resultat bei den Betroffenen zu erzielen.12,13 Hierfür stehen uns bewährte, hautgerichtete (Photo- und Phototherapie, topische KortikoSteroide, lokal zu verabreichende Zytostatika) Ansätze sowie systemische Wirkstoffe (Retinoide, Interferone) zur Verfügung, aber auch eine Reihe neuer, teils experimenteller Substanzen, die eine zielgerichtete Therapie molekularer Veränderungen bei CTCL ermöglichen.

Immuntherapie hat seit längerem einen hohen Stellenwert bei der Behandlung der CTCL. Dabei gilt es, die durch die Tumorzellen verursachte Dysbalance zugunsten der immunsupprimierend wirkenden Th2-Immunantwort in Richtung einer immunaktivierenden Th1-dominierten zu verlagern. Zu diesem Zweck werden Zytokine, wie Interferon-α (in Europa zugelassen) und Interferon-γ (in Japan und USA zugelassen) mit gutem Erfolg eingesetzt. Dabei wird oft von systemischen Nebenwirkungen einer Immuntherapie mit Interferonen berichtet, die sich negativ auf die Verträglichkeit und Compliance bei der Therapie auswirken können. Die lokale Verabreichung der Interferone würde zwar die systemischen Nebenwirkungen vermindern und die gewebespezifische Wirksamkeit erhöhen, wenn es das Problem mit der kurzen Halbwertszeit dieser Proteine nicht gegeben hätte. Um dies zu umgehen, versuchten wir das Interferon-γ in einen Adenovirus
zu verpacken und lokal der durch das Lymphom befallenen Haut zuzuführen (Abb. 3). So ist das TG1042 entstanden – ein replikationsunfähiger, adenoviraler Vektor der 3. Generation, der das humane Interferon-γ-Gen unter Kontrolle eines Zytomegalovirus-Promoters enthält.14 Wird er in Läsionen kutaner Lymphome injiziert, induziert er lokal die Produktion von Interferon-γ und anderen Th-1-Zytokinen, die dem lokalen Th-2-Zytokinmilieu der Lymphomzellen entgegen treten. Somit war eine immunmodulierende Gentherapie der kutanen Lymphome möglich. Die intraläsionale (intratumorale) Applikation führte bei der Hälfte der CTCL und bei allen behandelten CBCL zu einem lokalen Ansprechen bis hin zum vollständigen Verschwinden der Lymphomherde15,16 (Abb. 3). Darüber hinaus waren die lokalen Injektionen in der Lage, eine systemische Immunität gegen das Lymphom auszulösen, was zusätzlich das Verschwinden weiterer, ferner und nicht behandelter Hautläsionen bewirkte.15,16 Folgende Untersuchungen lieferten den Beweis, dass ein Ansprechen nicht nur durch das eingeführte Interferon-γ-Gen sondern durch die Stimulierung der angeborenen Immunität durch den Adenovirus geschieht. Adenoviren, wie auch andere Viren enthalten Strukturen, sogenannte PAMPs (pathogen-associated molecular patterns), welche nach dem Schlüssel-Schloss-Prinzip das menschliche Immunsystem über die sogenannten Toll-like-Rezeptoren (TLR) aktivieren und dabei zu einer vermehrten Produktion von Interferon-α und anderen entzündungsfördernden Zytokinen führen.17 Auf diesem Wege konnten wir belegen, dass nicht nur das Interferon-γ, das die erworbene Immunität kennzeichnet, sondern auch das Interferon-α, ein für die angeborene Immunität typisches Zytokin, also die beiden Zytokinsysteme und deren Zusammenspiel eine effiziente Immunantwort gegen die Tumorzellen bedingen17 (Abb. 4).

Auf Basis der positiven Daten dieser Phase-I- und -II-Studie, die überdies ein annehmbares Sicherheits- und Verträglichkeitsprofil aufwies, wurde dieses Gentherapieverfahren in einer multizentrischen Phase-II-Studie speziell bei CBCL untersucht. Es konnten Ansprechraten von 85 % verzeichnet
werden, davon haben sich bei der Hälfte der behandelten Patienten alle Lymphomläsionen vollständig zurückgebildet; mit einer medianen Zeit zur Progredienz von knapp 2 Jahren (Manuskript eingereicht).

Literatur

Plastizität des erwachsenen Gehirns
Täglich werden wir durch neuen Er-
fahrungen herausgefordert, auf die
Wir uns einstellen müssen, die unser
Handeln beeinflussen, und die in den
Kontext von früher gemachten Erleb-
nissen gestellt werden müssen. Um
dies zu bewerkstelligen, muss unser
Gehirn schnell und gezielt Erlebtes
speichern und einsortieren können, da-
mit neue Erfahrungen tatsächlich zur
Ausbildung von Lernen und Gedäch-
nis führen können. In diesem Prozess
kommst es allerdings nicht nur zu einer
funktionellen Veränderung unseres
Gehirns, sondern Erlebtes und neue
Erfahrungen führen auch dazu, dass
die Struktur und die Verbindungen
zwischen Nervenzellen im erwachse-
nen Gehirn kontinuierlich verändert
werden. Somit ist unser Gehirn kein
starres Organ, das wie ein Computer
funktioniert, sondern ist vielmehr stän-
digen Veränderungen unterworfen.
Diese strukturelle Flexibilität nennen
Wir erfahrungs- oder aktivitätsabhän-
gige Plastizität des Nervensystems
(Abb. 1). So weiss man inzwischen,
dass zum Beispiel durch Lernvorgänge
bestehende Verbindungen stabilisiert
und auch komplett neue Verknüpfun-
gen zwischen Nervenzellen geschaffen
werden, die wichtig sind für die Lang-
zeitspeicherung von Gedächtnisinhal-
ten. Bis vor circa 15 Jahren ging man
davon aus, dass aktivitätsabhängige
Plastizität nur auf Nervenzellen wir-
ken kann, die während der Embryonal-
development oder sehr früh im Leben
generiert wurden. Ein zentrales Dog-
ma der Neurowissenschaften bestand
nämlich darin, dass das Gehirn zwar
bis ins hohe Alter flexibel bleibt und
damit die Fähigkeit besitzt, lebenslang
zulernen, es allerdings nicht möglich
warnt, nach der Geburt neue Nervenzel-
len zu produzieren. Diese Vorstellung
basierte darauf, dass sich die Struktur
des Gehirns als zu komplex darstellte;
und man ging davon aus, dass es un-
möglich wäre, dass sich neugebildete
Nervenzellen in die vorbestehenden
kompilierten Schaltkreise von Ner-
vonellen einbauen könnten. Aller-
dings gab es schon in den 1960er Jahr-
en erste Hinweise darauf, dass auch
das erwachsene Gehirn Zellen besitzt,
die sich lebenslang teilen und neue
Nervenzellen produzieren können
(Altman & Das, 1965). Auch wenn mit
Abbildung 2. (A) Neurale Stammzellen mit einer radialen Morphologie (Type 1) teilen sich selten im adulten Gyrus dentatus und generieren dann hoch-proliferative Type 2 Zellen, die sich in neue Nervenzellen differenzieren. Während einer 4–6 wöchigen Reifungsphase werden verschiedene Zellmarker exprimiert (wie SOX2, Nestin, DCX usw.), bevor die neugeborenen Zellen voll funktionsfähig in das vorbestehende Netzwerk integriert werden. (B) Ähnlich ist die Situation in der subventrikulären Zone, in der es auch über verschiedene Zwischenstadien zur Neubildung von Nervenzellen kommt. Gezeigt sind Zellen, die über bestimmte Viren im Maushirn mit einem fluoreszierenden Farbstoff (green fluorescent protein, GFP) markiert wurden.
Adulter Neurogenese – wie neugebildete Nervenzellen die Struktur und Funktion des Gehirns beeinflussen

Regulation der adulten Neurogenese
Interessanterweise ist die Zahl der Nervenzellen, die neugebildet werden, dynamisch reguliert. So führen zum Beispiel Lernen, freiwillige physische Aktivität (die Mäuse haben Zugang zu einem Laufrad, auf dem sie freiwillig mehrere Kilometer pro Tag rennen) oder auch eine reizreiche Umgebung (dabei werden die Mäuse in grossen sozialen Gruppen gehalten und haben Zugang zu Spielsachen) zu einer vermehrten Produktion von neuen Ner-

Molekulare Mechanismen der Regulation von Stammzellaktivität und neuronaler Differenzierung

Erst im Lauf der letzten zehn Jahre konnte eine Reihe von zellulären und molekularen Mechanismen identifiziert werden, die die jeweiligen Schritte von der sich teilenden Stammzelle bis hin zur voll ausgereiften Nervenzelle regulieren (z. B. Jessberger & Kempermann, 2003; Jessberger et al., 2008a; Jessberger et al., 2008b). Dabei spielt auch die unmittelbare Umgebung der Stammzellen, die wir Stammzellnische nennen, eine kritische Rolle, da von dieser wichtigen Faktoren bereitgestellt werden, die den Stammzellen das Signal zur Teilung bzw. zur neuronalen Differenzierung geben (Lie et al., 2005; Karalay et al., 2011). Um neue Mechanismen zu identifizieren, die die Neubildung von
Nervenzellen regulieren, haben wir in früheren Experimenten Stammzellen und unreife, neugeborene Nervenzellen direkt aus dem erwachsenen Mausgehirn isoliert und anschliessend dasExpressionsprofil von allen Genen in diesen Zellen analysiert (Bracko et al., 2012) (Abb. 3). Mit diesem Ansatz konnten wir zum Beispiel eine wichtige Rolle des Wachstumsfaktors IGF2 für die Stammzellaktivität herausfinden (Bracko et al., 2012). Desweiteren konnten wir von dieser Methode ausgehend zwei neue Signalwege identifizieren, die für die neuronale Differenzierung und Integration von neugebildeten Nervenzellen wichtig sind (Prox1- und RhoGTPase-Signalkaskaden) (Karalay et al., 2011; Vadodaria et al., 2013).

Metabolische Regulation der adulten Stammzellaktivität
Interessanterweise gaben uns die Genexpressionsanalysen erste Hinweise darauf, dass adulte Stammzellen im Gehirn in einem offensichtlich besonderen Stoffwechselzustand sind. Wir konnten zeigen, dass Stammzellen darauf angewiesen sind, aus Zucker (Glucose) neue Fette und Lipide zu produzieren: wird das Schlüsselfyzenzym der Fettsäuresynthese (fatty acid synthase, Fasn) selektiv in neuralen Stammzellen von Mäusen blockiert, können sich die Stammzellen nicht mehr teilen und es kommt zu einer Reduktion der neugebildeten Nervenzellen (Knobloch et al., 2013) (Abb. 3). Zusätzlich fanden wir heraus, dass der Lipidstoffwechsel ein wichtiger Angriffspunkt ist, damit sich Stammzellen nicht ‘zu viel’ teilen, was zu einem verfrühten Aufbrauchen und letztendlichem Verlust von Stammzellen führen kann. Die Kontrolle über die Aktivität von Fasn übernimmt das regulatorische Protein Spot14, das selektiv in ruhenden, sich nicht teilenden Stammzellen exprimiert wird, und damit eine überschiessende Teilung von Stammzellen verhindert (Abb. 3).

Überraschenderweise scheint damit der metabolische Zustand von neuralen Stammzellen grundsätzlich verschieden zu sein von ihren Tochterzellen (den neugebildeten Nervenzellen) und auch anderen sich teilenden Zellen des Nervensystems, die ihren Bedarf an neuen Fettsäuren, die zum Beispiel wichtig sind für die Struktur von Zellmembranen, aber auch zur Si-
Adulte Neurogenese – wie neugebildete Nervenzellen die Struktur und Funktion des Gehirns beeinflussen

Funktionelle Bedeutung und Krankheitsrelevanz der adulten Neurogenese

Auch wenn wir klare Evidenz dafür haben, dass im *Gyrus dentatus* des *Hippokampus* und in der subventrikulären Zone des Gehirns lebenslang neue Nervenzellen produziert werden, so wissen wir immer noch nicht genau, welche Funktion neugebildete Nervenzellen für die normale Funktion des Gehirns haben und wie fehlerhafte Neurogenese zur Entstehung von Krankheiten beitragen kann bzw. inwiefern eine therapeutische Beeinflussung der Neurogenese sich positiv auf die Hirnfunktion auswirken könnte. Interessanterweise haben neugebildete Nervenzellen ganz bestimmte Eigenschaften, die sie von Nervenzellen gleichen Typs, die während der Embryonalentwicklung generiert wurden, deutlich unterscheiden: neugeborene, unreife Nervenzellen sind deutlich erregbarer als ihre ‚älteren‘ Schwestern und Brüder (Ge et al., 2007). Dies bedeutet, dass schon ein sehr kleiner Impuls ausreicht, um die neuen Zellen zu aktivieren. Eine Hypothese ist momentan, dass genau diese speziellen Fähigkeiten ein wichtiger Grund dafür sind, dass das Gehirn lebenslang neue Nervenzellen produziert. Eine experimentelle Herausforderung bestand – und besteht teilweise immer noch – darin, gezielt nur die Neurogenese im Tiermodell auszuschalten, da die Anzahl neugebildeter Nervenzellen, obwohl substanzellen, so doch im Vergleich mit der Anzahl embryonal gebildeter Nervenzellen doch eher gering ist. In

Auch wenn wir mit diesen Experimenten langsam verstehen, welche Rolle die Neurogenese für die Funktion des Maus- oder Rattengehirns spielt, so wissen wir immer noch wenig über die Funktion der Neurogenese unter physiologischen oder pathologischen Bedingungen beim Menschen. Die Hauptursache darin liegt in der Schwierigkeit, die Anzahl der neugebildeten Nervenzellen im menschlichen Gehirn zu bestimmen. Dafür werden gerade neue Methoden zum Beispiel mit der Kernspintomographie entwickelt, die dies in Zukunft möglich machen sollen. Gleichzeitig ist es wichtig zu untersuchen, ob Gene bzw. Proteine, für die eine wichtige Rolle für die Neuroge-

Zusammenfassung

Die Entdeckung, dass das erwachsene Gehirn lebenslang neue Nervenzellen produziert, hat unser Verständnis der Hirnfunktion und der neuralen Plastizität entscheidend verändert. Aufgabe ist es nun, weiter die zellulären und molekularen Mechanismen zu analysieren, die die Aktivität von Stammzellen und die neuronale Integration von neugeborenen Nervenzellen regulieren. Auch muss die Forschung der Zukunft versuchen, die Rolle von neugeborenen Nervenzellen für die physiologische Hirnfunktion beim Menschen und die Relevanz von fehlerhafter oder reduzierter Neurogenese im Zusammenhang mit neuropsychiatrischen Erkrankungen besser zu verstehen.

Unsere Forschung wird unterstützt durch den Schweizer Nationalfonds, National Center of Competence in Research (NCCR) Neural Plasticity and Repair, EMBO Young Investigator Program, Human Frontiers in Science Program, Neuroscience Center Zurich, Slack Gyr Foundation, Theodore Ott Foundation, ETH Zurich, und die University of Zürich.
Adulte Neurogenese – wie neugebildete Nervenzellen die Struktur und Funktion des Gehirns beeinflussen

Referenzen

