Header

UZH-Logo

Maintenance Infos

The world's smallest Campanulaceae: Lysipomia mitsyae sp. nov.


Sylvester, Steven P; Quandt, Dietmar; Ammann, Lolita; Kessler, Michael (2016). The world's smallest Campanulaceae: Lysipomia mitsyae sp. nov. Taxon, 65(2):305-314.

Abstract

Botanists and plant morphologists have long been fascinated by how certain species can exhibit such reduced morphologies that even their identification to genus- or family-level becomes difficult. Such was the case with Lysipomia mitsyae sp. nov., an exceptionally small plant discovered in the Peruvian Andes which bears lobelioid characteristics but differs in size by an order of magnitude from the current smallest members known from the entire Campanulaceae and lacks diagnostic characters allowing it to be reliably placed to genus-level. Molecular analyses of trnL-F, composed of a representative Lobelioideae sampling, place the samples within the genus Lysipomia, requiring that amendments be made to the description of the genus. Supplementary ITS analyses of a representative generic sampling indicate a close relationship to Lysipomia sphagnophila and L. multiflora. We here describe the world's smallest Campanulaceae, Lysipomia mitsyae sp. nov., and discuss its phylogenetic and systematic relationships to the other members of the genus. Its highly reduced morphology, which has given it status as the smallest Campanulaceae and, quite possibly, the world's smallest eudicot, is discussed in the light of current knowledge on the physiological and anatomical constraints on alpine plant growth and survival.

Abstract

Botanists and plant morphologists have long been fascinated by how certain species can exhibit such reduced morphologies that even their identification to genus- or family-level becomes difficult. Such was the case with Lysipomia mitsyae sp. nov., an exceptionally small plant discovered in the Peruvian Andes which bears lobelioid characteristics but differs in size by an order of magnitude from the current smallest members known from the entire Campanulaceae and lacks diagnostic characters allowing it to be reliably placed to genus-level. Molecular analyses of trnL-F, composed of a representative Lobelioideae sampling, place the samples within the genus Lysipomia, requiring that amendments be made to the description of the genus. Supplementary ITS analyses of a representative generic sampling indicate a close relationship to Lysipomia sphagnophila and L. multiflora. We here describe the world's smallest Campanulaceae, Lysipomia mitsyae sp. nov., and discuss its phylogenetic and systematic relationships to the other members of the genus. Its highly reduced morphology, which has given it status as the smallest Campanulaceae and, quite possibly, the world's smallest eudicot, is discussed in the light of current knowledge on the physiological and anatomical constraints on alpine plant growth and survival.

Statistics

Altmetrics

Downloads

69 downloads since deposited on 25 May 2016
54 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Systematic and Evolutionary Botany
07 Faculty of Science > Zurich-Basel Plant Science Center
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2016
Deposited On:25 May 2016 16:25
Last Modified:12 Jan 2017 12:55
Publisher:International Association for Plant Taxonomy
ISSN:0040-0262
Publisher DOI:https://doi.org/10.12705/652.7

Download

Preview Icon on Download
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations