Header

UZH-Logo

Maintenance Infos

Independent component processes underlying emotions during natural music listening


Rogenmoser, Lars; Zollinger, Nina; Elmer, Stefan; Jäncke, Lutz (2016). Independent component processes underlying emotions during natural music listening. Social Cognitive and Affective Neuroscience, 11(9):1428-1439.

Abstract

The aim of this study was to investigate the brain processes underlying emotions during natural music listening. To address this, we recorded high-density electroencephalography (EEG) from 22 subjects while presenting a set of individually matched whole musical excerpts varying in valence and arousal. Independent component analysis was applied to decompose the EEG data into functionally distinct brain processes. A k-means cluster analysis calculated on the basis of a combination of spatial (scalp topography and dipole location mapped onto the Montreal Neurological Institute brain template) and functional (spectra) characteristics revealed 10 clusters referring to brain areas typically involved in music and emotion processing, namely in the proximity of thalamic-limbic and orbitofrontal regions as well as at frontal, fronto-parietal, parietal, parieto-occipital, temporo-occipital and occipital areas. This analysis revealed that arousal was associated with a suppression of power in the alpha frequency range. On the other hand, valence was associated with an increase in theta frequency power in response to excerpts inducing happiness compared to sadness. These findings are partly compatible with the model proposed by Heller, arguing that the frontal lobe is involved in modulating valenced experiences (the left frontal hemisphere for positive emotions) whereas the right parieto-temporal region contributes to the emotional arousal.

Abstract

The aim of this study was to investigate the brain processes underlying emotions during natural music listening. To address this, we recorded high-density electroencephalography (EEG) from 22 subjects while presenting a set of individually matched whole musical excerpts varying in valence and arousal. Independent component analysis was applied to decompose the EEG data into functionally distinct brain processes. A k-means cluster analysis calculated on the basis of a combination of spatial (scalp topography and dipole location mapped onto the Montreal Neurological Institute brain template) and functional (spectra) characteristics revealed 10 clusters referring to brain areas typically involved in music and emotion processing, namely in the proximity of thalamic-limbic and orbitofrontal regions as well as at frontal, fronto-parietal, parietal, parieto-occipital, temporo-occipital and occipital areas. This analysis revealed that arousal was associated with a suppression of power in the alpha frequency range. On the other hand, valence was associated with an increase in theta frequency power in response to excerpts inducing happiness compared to sadness. These findings are partly compatible with the model proposed by Heller, arguing that the frontal lobe is involved in modulating valenced experiences (the left frontal hemisphere for positive emotions) whereas the right parieto-temporal region contributes to the emotional arousal.

Statistics

Citations

Dimensions.ai Metrics
4 citations in Web of Science®
6 citations in Scopus®
5 citations in Microsoft Academic
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Neuroscience Center Zurich
04 Faculty of Medicine > Center for Integrative Human Physiology
06 Faculty of Arts > Institute of Psychology
Dewey Decimal Classification:150 Psychology
Uncontrolled Keywords:DoktoratPsych Erstautor
Date:11 April 2016
Deposited On:13 Jun 2016 14:07
Last Modified:02 Feb 2018 10:05
Publisher:Oxford University Press
ISSN:1749-5016
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/scan/nsw048
PubMed ID:27217116

Download

Full text not available from this repository.
View at publisher

Get full-text in a library