Header

UZH-Logo

Maintenance Infos

Endothelial cell-derived semaphorin 3A inhibits filopodia formation by blood vascular tip cells


Ochsenbein, Alexandra M; Karaman, Sinem; Proulx, Steven T; Berchtold, Michaela; Jurisic, Giorgia; Stoeckli, Esther T; Detmar, Michael (2016). Endothelial cell-derived semaphorin 3A inhibits filopodia formation by blood vascular tip cells. Development, 143(4):589-594.

Abstract

Vascular endothelial growth factor (VEGF)-A is a well-known major chemoattractant driver of angiogenesis--the formation of new blood vessels from pre-existing ones. However, the repellent factors that fine-tune this angiogenic process remain poorly characterized. We investigated the expression and functional role of endothelial cell-derived semaphorin 3A (Sema3A) in retinal angiogenesis, using genetic mouse models. We found Sema3a mRNA expression in the ganglion cell layer and the presence of Sema3A protein on larger blood vessels and at the growing front of blood vessels in neonatal retinas. The Sema3A receptors neuropilin-1 and plexin-A1 were expressed by retinal blood vessels. To study the endothelial cell-specific role of Sema3A, we generated endothelial cell-specific Sema3A knockout mouse strains by constitutive or inducible vascular endothelial cadherin-Cre-mediated gene disruption. We found that in neonatal retinas of these mice, both the number and the length of tip cell filopodia were significantly increased and the leading edge growth pattern was irregular. Retinal explant experiments showed that recombinant Sema3A significantly decreased VEGF-A-induced filopodia formation. Endothelial cell-specific knockout of Sema3A had no impact on blood vessel density or skin vascular leakage in adult mice. These findings indicate that endothelial cell-derived Sema3A exerts repelling functions on VEGF-A-induced tip cell filopodia and that a lack of this signaling cannot be rescued by paracrine sources of Sema3A.

Abstract

Vascular endothelial growth factor (VEGF)-A is a well-known major chemoattractant driver of angiogenesis--the formation of new blood vessels from pre-existing ones. However, the repellent factors that fine-tune this angiogenic process remain poorly characterized. We investigated the expression and functional role of endothelial cell-derived semaphorin 3A (Sema3A) in retinal angiogenesis, using genetic mouse models. We found Sema3a mRNA expression in the ganglion cell layer and the presence of Sema3A protein on larger blood vessels and at the growing front of blood vessels in neonatal retinas. The Sema3A receptors neuropilin-1 and plexin-A1 were expressed by retinal blood vessels. To study the endothelial cell-specific role of Sema3A, we generated endothelial cell-specific Sema3A knockout mouse strains by constitutive or inducible vascular endothelial cadherin-Cre-mediated gene disruption. We found that in neonatal retinas of these mice, both the number and the length of tip cell filopodia were significantly increased and the leading edge growth pattern was irregular. Retinal explant experiments showed that recombinant Sema3A significantly decreased VEGF-A-induced filopodia formation. Endothelial cell-specific knockout of Sema3A had no impact on blood vessel density or skin vascular leakage in adult mice. These findings indicate that endothelial cell-derived Sema3A exerts repelling functions on VEGF-A-induced tip cell filopodia and that a lack of this signaling cannot be rescued by paracrine sources of Sema3A.

Statistics

Citations

5 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

11 downloads since deposited on 21 Jun 2016
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:15 February 2016
Deposited On:21 Jun 2016 13:28
Last Modified:22 Jun 2016 12:48
Publisher:Company of Biologists
ISSN:0950-1991
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1242/dev.127670
PubMed ID:26884395

Download

Download PDF  'Endothelial cell-derived semaphorin 3A inhibits filopodia formation by blood vascular tip cells'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 1MB
View at publisher