Header

UZH-Logo

Maintenance Infos

A dosimetric comparison of real-time adaptive and non-adaptive radiotherapy: A multi-institutional study encompassing robotic, gimbaled, multileaf collimator and couch tracking


Colvill, Emma; Booth, Jeremy; et al; Guckenberger, Matthias (2016). A dosimetric comparison of real-time adaptive and non-adaptive radiotherapy: A multi-institutional study encompassing robotic, gimbaled, multileaf collimator and couch tracking. Radiotherapy and Oncology, 119(1):159-165.

Abstract

PURPOSE A study of real-time adaptive radiotherapy systems was performed to test the hypothesis that, across delivery systems and institutions, the dosimetric accuracy is improved with adaptive treatments over non-adaptive radiotherapy in the presence of patient-measured tumor motion. METHODS AND MATERIALS Ten institutions with robotic(2), gimbaled(2), MLC(4) or couch tracking(2) used common materials including CT and structure sets, motion traces and planning protocols to create a lung and a prostate plan. For each motion trace, the plan was delivered twice to a moving dosimeter; with and without real-time adaptation. Each measurement was compared to a static measurement and the percentage of failed points for γ-tests recorded. RESULTS For all lung traces all measurement sets show improved dose accuracy with a mean 2%/2mm γ-fail rate of 1.6% with adaptation and 15.2% without adaptation (p<0.001). For all prostate the mean 2%/2mm γ-fail rate was 1.4% with adaptation and 17.3% without adaptation (p<0.001). The difference between the four systems was small with an average 2%/2mm γ-fail rate of <3% for all systems with adaptation for lung and prostate. CONCLUSIONS The investigated systems all accounted for realistic tumor motion accurately and performed to a similar high standard, with real-time adaptation significantly outperforming non-adaptive delivery methods.

Abstract

PURPOSE A study of real-time adaptive radiotherapy systems was performed to test the hypothesis that, across delivery systems and institutions, the dosimetric accuracy is improved with adaptive treatments over non-adaptive radiotherapy in the presence of patient-measured tumor motion. METHODS AND MATERIALS Ten institutions with robotic(2), gimbaled(2), MLC(4) or couch tracking(2) used common materials including CT and structure sets, motion traces and planning protocols to create a lung and a prostate plan. For each motion trace, the plan was delivered twice to a moving dosimeter; with and without real-time adaptation. Each measurement was compared to a static measurement and the percentage of failed points for γ-tests recorded. RESULTS For all lung traces all measurement sets show improved dose accuracy with a mean 2%/2mm γ-fail rate of 1.6% with adaptation and 15.2% without adaptation (p<0.001). For all prostate the mean 2%/2mm γ-fail rate was 1.4% with adaptation and 17.3% without adaptation (p<0.001). The difference between the four systems was small with an average 2%/2mm γ-fail rate of <3% for all systems with adaptation for lung and prostate. CONCLUSIONS The investigated systems all accounted for realistic tumor motion accurately and performed to a similar high standard, with real-time adaptation significantly outperforming non-adaptive delivery methods.

Statistics

Citations

7 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

8 downloads since deposited on 23 Jun 2016
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Radiation Oncology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:April 2016
Deposited On:23 Jun 2016 14:53
Last Modified:03 Aug 2017 17:31
Publisher:Elsevier
ISSN:0167-8140
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.radonc.2016.03.006
PubMed ID:27016171

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations