Header

UZH-Logo

Maintenance Infos

Responses to nitrate pollution, warming and density in common frog tadpoles (Rana temporaria)


Van Buskirk, Josh; Egea-Serrano, Andrés (2016). Responses to nitrate pollution, warming and density in common frog tadpoles (Rana temporaria). Amphibia - Reptilia, 37(1):45-54.

Abstract

Amphibians face a variety of anthropogenic environmental perturbations that could act alone or in combination to influence population size. We investigated interactive effects of warming conditions, a moderate pulse of nitrogen pollution, and conspecific density on larvae of the common frog, Rana temporaria. The 16-day experiment had a 2 × 2 × 2 factorial design implemented in 80-l outdoor mesocosms. High density and warm temperature both resulted in reduced activity and visibility; tadpoles grew and developed more quickly at low density and high temperature. The high-nitrogen treatment did not influence behavior, growth, or development rate. We attribute this to several realistic features of our study, including a pulsed treatment application and natural denitrification within the mesocosms. There was only a single interaction among the three factors: higher temperature exacerbated density-dependence in growth rate. These results illustrate that climate warming may benefit temperate amphibians, although the benefits may be counteracted by enhanced larval crowding.

Abstract

Amphibians face a variety of anthropogenic environmental perturbations that could act alone or in combination to influence population size. We investigated interactive effects of warming conditions, a moderate pulse of nitrogen pollution, and conspecific density on larvae of the common frog, Rana temporaria. The 16-day experiment had a 2 × 2 × 2 factorial design implemented in 80-l outdoor mesocosms. High density and warm temperature both resulted in reduced activity and visibility; tadpoles grew and developed more quickly at low density and high temperature. The high-nitrogen treatment did not influence behavior, growth, or development rate. We attribute this to several realistic features of our study, including a pulsed treatment application and natural denitrification within the mesocosms. There was only a single interaction among the three factors: higher temperature exacerbated density-dependence in growth rate. These results illustrate that climate warming may benefit temperate amphibians, although the benefits may be counteracted by enhanced larval crowding.

Statistics

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 05 Jul 2016
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:2016
Deposited On:05 Jul 2016 12:36
Last Modified:08 Dec 2017 19:50
Publisher:Brill
ISSN:0173-5373
Publisher DOI:https://doi.org/10.1163/15685381-00003029

Download