Header

UZH-Logo

Maintenance Infos

Can Bayesian Theories of Autism Spectrum Disorder Help Improve Clinical Practice?


Haker, Helene; Schneebeli, Maya; Stephan, Klaas Enno (2016). Can Bayesian Theories of Autism Spectrum Disorder Help Improve Clinical Practice? Frontiers in Psychiatry:7:107.

Abstract

Diagnosis and individualized treatment of autism spectrum disorder (ASD) represent major problems for contemporary psychiatry. Tackling these problems requires guidance by a pathophysiological theory. In this paper, we consider recent theories that re-conceptualize ASD from a “Bayesian brain” perspective, which posit that the core abnormality of ASD resides in perceptual aberrations due to a disbalance in the precision of prediction errors (sensory noise) relative to the precision of predictions (prior beliefs). This results in percepts that are dominated by sensory inputs and less guided by top-down regularization and shifts the perceptual focus to detailed aspects of the environment with difficulties in extracting meaning. While these Bayesian theories have inspired ongoing empirical studies, their clinical implications have not yet been carved out. Here, we consider how this Bayesian perspective on disease mechanisms in ASD might contribute to improving clinical care for affected individuals. Specifically, we describe a computational strategy, based on generative (e.g., hierarchical Bayesian) models of behavioral and functional neuroimaging data, for establishing diagnostic tests. These tests could provide estimates of specific cognitive processes underlying ASD and delineate pathophysiological mechanisms with concrete treatment targets. Written with a clinical audience in mind, this article outlines how the development of computational diagnostics applicable to behavioral and functional neuroimaging data in routine clinical practice could not only fundamentally alter our concept of ASD but eventually also transform the clinical management of this disorder.

Abstract

Diagnosis and individualized treatment of autism spectrum disorder (ASD) represent major problems for contemporary psychiatry. Tackling these problems requires guidance by a pathophysiological theory. In this paper, we consider recent theories that re-conceptualize ASD from a “Bayesian brain” perspective, which posit that the core abnormality of ASD resides in perceptual aberrations due to a disbalance in the precision of prediction errors (sensory noise) relative to the precision of predictions (prior beliefs). This results in percepts that are dominated by sensory inputs and less guided by top-down regularization and shifts the perceptual focus to detailed aspects of the environment with difficulties in extracting meaning. While these Bayesian theories have inspired ongoing empirical studies, their clinical implications have not yet been carved out. Here, we consider how this Bayesian perspective on disease mechanisms in ASD might contribute to improving clinical care for affected individuals. Specifically, we describe a computational strategy, based on generative (e.g., hierarchical Bayesian) models of behavioral and functional neuroimaging data, for establishing diagnostic tests. These tests could provide estimates of specific cognitive processes underlying ASD and delineate pathophysiological mechanisms with concrete treatment targets. Written with a clinical audience in mind, this article outlines how the development of computational diagnostics applicable to behavioral and functional neuroimaging data in routine clinical practice could not only fundamentally alter our concept of ASD but eventually also transform the clinical management of this disorder.

Statistics

Citations

6 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

17 downloads since deposited on 05 Jul 2016
12 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Uncontrolled Keywords:autism spectrum disorder, Asperger syndrome, translational research, diagnostic tests, generative modeling, Bayesian inference, Bayesian models, neuroimaging
Language:English
Date:17 June 2016
Deposited On:05 Jul 2016 15:10
Last Modified:08 Dec 2017 19:51
Publisher:Frontiers Research Foundation
ISSN:1664-0640
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3389/fpsyt.2016.00107

Download

Download PDF  'Can Bayesian Theories of Autism Spectrum Disorder Help Improve Clinical Practice?'.
Preview
Content: Published Version
Filetype: PDF
Size: 501kB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)