Header

UZH-Logo

Maintenance Infos

Patient Specific Hardware-in-the-Loop Testing of Cerebrospinal Fluid Shunt Systems


Gehlen, Manuel; Kurtcuoglu, Vartan; Schmid Daners, Marianne (2016). Patient Specific Hardware-in-the-Loop Testing of Cerebrospinal Fluid Shunt Systems. IEEE Transactions on Bio-Medical Engineering, 63(2):348-358.

Abstract

GOAL
The development of increasingly sophisticated cerebrospinal fluid (CSF) shunts calls for test beds that can reproduce an ever larger range of physiologic and pathophysiologic behaviors. In particular, upcoming smart and active devices will require extensive testing under complex dynamic conditions. Herein, we describe a test bed that allows for fast, cost effective, and realistic in vitro testing of active and passive, gravitational and nongravitational CSF shunts based on the hardware-in-the-loop principle.
METHODS
The shunt to be tested is placed in a dynamic in vitro setup that interfaces with a mathematical model of the patient's relevant physiology, which is evaluated numerically in real time. The model parameters can be identified using standard clinical tests. The test bed accounts for posture-dependent behavior and viscoelastic effects.
RESULTS
Simulations of infusion tests, of intracranial pressure modulation by cardiovascular action, and of the effects of postural changes show good agreement with published results. Evaluation of valves without and with gravitational units show in modeled sitting patients the expected behavior of overdrainage and avoidance thereof, respectively. Finally, a 24-h test cycle based on recorded patient data elucidates the interaction between patient and shunt system expressed by drainage rate and intracranial pressure during typical daily activities.
CONCLUSION
We envision this test bed as a tool to quantify a shunt's performance within a realistic yet reproducible testing environment.
SIGNIFICANCE
The test bed can improve our understanding of the complex interaction between patient and shunt system and may catalyze the development of active shunts, while reducing the number of necessary in vivo experiments.

Abstract

GOAL
The development of increasingly sophisticated cerebrospinal fluid (CSF) shunts calls for test beds that can reproduce an ever larger range of physiologic and pathophysiologic behaviors. In particular, upcoming smart and active devices will require extensive testing under complex dynamic conditions. Herein, we describe a test bed that allows for fast, cost effective, and realistic in vitro testing of active and passive, gravitational and nongravitational CSF shunts based on the hardware-in-the-loop principle.
METHODS
The shunt to be tested is placed in a dynamic in vitro setup that interfaces with a mathematical model of the patient's relevant physiology, which is evaluated numerically in real time. The model parameters can be identified using standard clinical tests. The test bed accounts for posture-dependent behavior and viscoelastic effects.
RESULTS
Simulations of infusion tests, of intracranial pressure modulation by cardiovascular action, and of the effects of postural changes show good agreement with published results. Evaluation of valves without and with gravitational units show in modeled sitting patients the expected behavior of overdrainage and avoidance thereof, respectively. Finally, a 24-h test cycle based on recorded patient data elucidates the interaction between patient and shunt system expressed by drainage rate and intracranial pressure during typical daily activities.
CONCLUSION
We envision this test bed as a tool to quantify a shunt's performance within a realistic yet reproducible testing environment.
SIGNIFICANCE
The test bed can improve our understanding of the complex interaction between patient and shunt system and may catalyze the development of active shunts, while reducing the number of necessary in vivo experiments.

Statistics

Citations

3 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

30 downloads since deposited on 18 Jul 2016
25 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology

04 Faculty of Medicine > Neuroscience Center Zurich
04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:February 2016
Deposited On:18 Jul 2016 11:39
Last Modified:08 Dec 2017 19:54
Publisher:Institute of Electrical and Electronics Engineers
ISSN:0018-9294
Publisher DOI:https://doi.org/10.1109/TBME.2015.2457681
PubMed ID:26208258

Download

Download PDF  'Patient Specific Hardware-in-the-Loop Testing of Cerebrospinal Fluid Shunt Systems'.
Preview
Content: Accepted Version
Filetype: PDF (Preprint)
Size: 4MB
View at publisher