Anticoagulation Control in Swiss Primary Care: Time in Therapeutic Range Percentages Exceed Benchmarks of Phase III Trials

Djalali, S; Valeri, F; Gerber, B; Meli, D. N; Senn, O

Abstract: BACKGROUND: In randomized controlled trials, non-vitamin K antagonist oral anticoagulants (NOACs) demonstrated noninferiority to vitamin K antagonists (VKAs) in patients who spent limited time in therapeutic range (TTR). In real-life patients, TTR is known to vary significantly across countries and health-care settings. OBJECTIVE: We aim to evaluate the quality of VKA treatment in Swiss primary care (PC) by comparing patients’ median TTR to levels achieved in the phase III NOAC trials RE-LY, ROCKET-AF, ARISTOTLE, and ENGAGE-AF-TIMI 48. Patient characteristics affecting TTR control shall be estimated. METHODS: This is a retrospective longitudinal study in Swiss PC patients receiving VKA for 6 months. We identified patients from the PC research database FIRE (Family medicine International Classification of Primary Care Research using Electronic medical records) and calculated TTR according to Rosendaal formula. Comparative data from NOAC trials were retrieved from medical literature. Linear regression models were used to assess predictors of TTR. RESULTS: Primary care encounters of 215 patients were analyzed. Like in the NOAC trials, median observation period was 2.2 years, but patients were older (67.9% vs 38% 75 years) and differed in terms of concomitant diseases and drugs. Median TTR was 75% (65% in the NOAC trials). Female sex was independently associated with a lower TTR and significantly modified by increasing age. CONCLUSION: Practitioners should consider that patients in NOAC trials are only partly representative of PC patients, particularly in terms of TTR control. Only a minority of the observed patients would require a therapy switch to NOACs due to inadequate TTR. Further research is needed in order to identify specific features of care management that are associated with these outcomes.

DOI: https://doi.org/10.1177/1076029616642514

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-124946
Accepted Version

Originally published at:
DOI: https://doi.org/10.1177/1076029616642514
Anticoagulation control in Swiss primary care: Time in therapeutic range percentages exceed benchmarks of phase III trials

Sima Djalali, MD1*, Fabio Valeri1, Bernhard Gerber, MD2, Damian N. Meli, MD3, Oliver Senn, MD, MPH1

1 Institute of Primary Care, University of Zurich, University Hospital Zurich, Switzerland
2 Department of Hematology, Istituto Oncologico della Svizzera Italiana, Ospedale Regionale Bellinzona e Valli, Bellinzona, Switzerland
3 General Practice Center Huttwil, Huttwil, Switzerland

* Corresponding author:
Dr. med. Sima Djalali
Institute of Primary Care
University of Zurich, University Hospital Zurich
Pestalozzistrasse 24, 8091 Zurich, Switzerland
simajalali@usz.ch

E-Mail addresses of co-authors: fabio.valeri@usz.ch ; bernhard.gerber@eoc.ch ; d.meli@hin.ch ; oliver.senn@usz.ch

Word count: 3'499 (main text), 250 (abstract without headings)

Acknowledgements

This research received funding from the Swiss Academy of Medical Science (SAMS), Gottfried and Julia-Bangerter-Rhyner-Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We would like to thank all participating GPs in the FIRE project.
Abstract

Background
In randomized controlled trials, novel oral anticoagulants (NOAC) demonstrated non-inferiority to Vitamin K antagonists (VKA) in patients who spent limited time in therapeutic range (TTR). In real-life patients TTR is known to vary significantly across countries and healthcare settings.

Objective
We aim to evaluate the quality of VKA treatment in Swiss primary care (PC) by comparing patients’ median TTR to levels achieved in the phase III NOAC trials RE-LY, ROCKET-AF, ARISTOTLE, and ENGAGE-AF-TIMI 48. Patient characteristics affecting TTR control shall be estimated.

Methods
This is a retrospective longitudinal study in Swiss PC patients receiving VKA for ≥6 months. We identified patients from the PC research database «FIRE» and calculated TTR according to Rosendaal’s formula. Comparative data from NOAC trials were retrieved from medical literature. Linear regression models were used to assess predictors of TTR.

Results
PC encounters of 215 patients were analyzed. Like in the NOAC trials, median observation period was 2.2 years, but patients were older (67.9% vs. 38% ≥75 years) and differed in terms of concomitant diseases and drugs. Median TTR was 75% (65% in the NOAC trials). Female sex was independently associated with a lower TTR and significantly modified by increasing age.

Conclusion
Practitioners should consider that patients in NOAC trials are only partly representative of PC patients, particularly in terms of TTR control. Only a minority of the observed patients would require a therapy switch to NOACs due to inadequate TTR. Further research is needed in order to identify specific features of care management that are associated with these outcomes.
Introduction

Optimal management of long-term anticoagulant treatment for the prevention and treatment of thrombosis, cardiovascular and cerebrovascular events is subject of increasing interest, mainly due to the availability of non-Vitamin K antagonist oral anticoagulants (NOACs). The introduction of NOACs questioned the usefulness of the Vitamin K antagonists (VKA), whose efficacy and safety are known to depend largely on the quality of anticoagulation control. Reports on patients' time spent in therapeutic range (TTR) of international normalized ratio (INR) level in daily practice of various countries suggest that the quality of anticoagulation control with VKA is poor, especially in primary care settings [1]. Reported TTR commonly ranges between 52% and 64%, but also lower values (29%) have been observed [2-24]. Specialized anticoagulation clinics (ACCs) and patients' self-monitoring tend to show better outcomes. However, in light of the high prevalence of patients in need of anticoagulant treatment, it does not seem feasible that solely ACCs could take care of these patients, and self-monitoring may not be feasible for everyone [15-22,25-29]. NOACs could represent a solution to this dilemma, since their pharmacologic properties simplify the administration and do not require monitoring [30]. However, the body of evidence in favor of NOACs is of questionable significance for the primary care setting since it is predominantly based on phase III randomized controlled trials (RCTs) with non-inferiority design and carefully selected patient populations treated in specialized centres for atrial fibrillation [31-35]. These approval studies show non-inferiority of NOACs as compared to the VKA agent warfarin, whereby patients under warfarin treatment spent on average (median) 65% of the follow-up time within the therapeutic range of INR 2–3 [35]. Owing to important differences in study design and a lack of head-to-head trials, whether or not the different NOAC agents are equivalent with regards to efficacy and safety has not been verified yet [36-40]. Data on the effectiveness of the agents (i.e. the extent to which the agents achieve their intended effect in the usual clinical setting) are derived from observational studies, not from randomized controlled trials, and often lack information on the TTR of patients under VKA treatment [41-47]. So, it remains unclear if these studies compared NOAC performance
to high or low quality VKA treatments. The validity of these comparisons is therefore limited. As far as the NOAC agent dabigatran is concerned, advantages over warfarin were only seen in study centres where TTR was less than 72% [48]. By contrast, there are also examples of high quality TTR control in daily practice. Previous reports from Sweden and the Netherlands documented TTR benchmarks as high as 76% and 81%, respectively [49-51]. Moreover, a sub-analysis of the ROCKET AF trial revealed global geographic region as being the strongest predictor of patients’ individual TTR independent of patients’ characteristics such as age and comorbidities [52]. This finding is likely to reflect different structures of care and support systems to manage warfarin and different regional barriers to frequent INR testing and warfarin dose changes. Under daily practice conditions – outside of clinical trials – local differences also include the use of VKA agents other than warfarin (e.g. phenprocoumon, fluindione, acenocoumarol) that differ considerably regarding their half-lives, further affecting the comparability of local settings [18,53,54]. Therefore, it seems unjustified to extrapolate findings made under study conditions or in foreign healthcare settings and to define a one-size-fits-all decision on first-line anticoagulant agents and ideal provision of care services without discussing the current standard of TTR control in specific care settings.

It is the aim of our study to contribute data on TTR control achieved in Swiss primary care practices to the discussion. As in many other countries, long-term anticoagulant therapy in Switzerland is mainly a task of general practitioners (GPs) [55]. Available VKA agents are phenprocoumon and acenocoumarol. Most frequently, phenprocoumon is used. INR monitoring is usually performed using a point-of-care device in order to adjust VKA dosage prescription during the same consultation if necessary. To date, the average TTR achieved in this setting is unknown, and it is unclear whether the patient populations of the RCTs are representative of Swiss primary care patients. We aim:

1) to evaluate the stability of anticoagulant treatment in Swiss primary care expressed as patients' average TTR of INR 2–3 as compared to the TTR levels achieved in the warfarin
arms of NOAC approval studies, RE-LY, ROCKET-AF, ARISTOTLE, and ENGAGE-AF-TIMI 48 [31-34];

2) to evaluate the characteristics of patients who receive long-term anticoagulant treatment with VKAs for ≥6 months in Swiss primary care;

3) to compare these characteristics to baseline characteristics of intention-to-treat (ITT) populations included in the abovementioned RCTs; and

4) to assess the impact of patient characteristics known to affect anticoagulation control with VKA measured by TTR;

Material and Methods

In this retrospective longitudinal study, we calculated the TTR of Swiss primary care patients receiving long-term anticoagulant treatment with VKAs for ≥6 months without interruption based on recorded results of INR tests according to Rosendaal’s formula [56]. The combined ITT population included in the NOAC approval studies RE-LY, ROCKET-AF, ARISTOTLE, and ENGAGE-AF-TIMI 48 served as a comparator to our study population. We will subsequently refer to this population as the NOAC RCT population.

FIRE database

Eligible patients were identified from the primary care research database FIRE (Family medicine ICPC Research using Electronic medical records) receiving long-term anticoagulant treatment with VKAs for ≥6 months. The FIRE database is the core of an ongoing health services research project at the Institute of Primary Care at the University and University Hospital of Zurich, Switzerland. Details about the project, the data structure and the validation of the database were reported previously [57,58]. In short, the database established in 2009 contains information on all physician-patient contacts in participating primary care practices around Switzerland. Data are extracted from routinely used electronic medical records, fully anonymized and aggregated by individual consultation dates and
randomly generated, de-identifiable but unique patient ID numbers. The dataset covers patients' age, sex, reasons for encounter according to the ICPC-2 classification (International Classification of Primary Care 2) [59], vital signs, laboratory test results as well as type and dosage of prescribed medication according to Anatomical Therapeutic Chemical/Defined Daily Dose Classification (ATC/DDD) coding established by the WHO [60]. According to current Swiss law on human research retrospective analysis of anonymously collected medical routine data requires no approval by regional ethics committees [61].

Patient population

All patients with INR tests recorded between May 2009 and January 2015 were eligible and included based on the following criteria:

- prescribed VKA treatment for at least 6 months (this criterion would exclude patients with VKA treatment due to a first event of deep vein thrombosis and time-limited risk of thromboembolic disease)
- no prescription of heparin agents during VKA treatment period (this criterion would exclude patients with periprocedural interruption of VKA treatment and heparin bridging).

Patients’ baseline characteristics were directly obtained from the FIRE database or derived from the available dataset as follows: Indication for anticoagulant treatment was derived from the ICPC-2 codes assigned to the patient during VKA treatment; Presence of concomitant chronic conditions were derived both from ICPC-2 codes and pharmaceutical cost groups based on ATC/DDD coding according to the established algorithms of O’Halloran et al. and Lamers et al., respectively [62,63]. This approach has previously been validated for the FIRE database [58,64]; All drugs prescribed for at least 6 months were considered to be long-term medication and counted as concomitant drugs; CHADS₂-Score of stroke risk in patients with atrial fibrillation according to ICPC-2 coding was calculated according to Gage, et al. [65]. We used the CHADS₂-Score instead of the CHA₂DS₂-VASc-Score for comparison reasons, because the NOAC approval studies exclusively reported the CHADS₂-Score. Creatinine
clearance in ml/min was calculated based on serum creatinine values according to the Cockroft-Gault equation [66]. Bleeding events were not registered in the database.

Comparative studies

Baseline characteristics of the NOAC RCT population were extracted from the datasets of the RE-LY, ROCKET-AF, ARISTOTLE, and ENGAGE-AF-TIMI 48 studies published in medical literature [31-35].

Outcome definitions

We defined good anticoagulation control as TTR >70%, moderate control as TTR 61–70%, poor control as TTR 40–60% and ineffective control as TTR <40% based on guideline recommendations and current literature [38,67-74].

Statistics

Data are presented as frequencies and percentages, mean and standard deviation (SD) or median and interquartile range (IQR), where appropriate. If not indicated otherwise, all percentages refer to the total number of included patients. First, correlation of TTR and age, sex, overall number of chronic conditions and drugs taken, hypertension, diabetes, congestive heart failure, creatinine clearance, CHADS\textsubscript{2}-scoring, length of observation (years), number of physician-patient contacts and number of INR tests was assessed using univariable linear regression models. Results are presented as coefficients, 95% confidence intervals (CI) and p-values. A p-value <0.1 was considered as statistically significant. In a second step, all variables showing a significant impact on TTR in univariable analysis were included in a multivariable linear regression model. Subsequently, robustness of the results was tested by adding GPs as random variable to the model (mixed model) in order to adjust for clustering effects. Then, a p-value <0.05 was considered as statistically significant. All
statistical analyses were done in R (version 3.0.2, The R Foundation for Statistical Computing, Vienna, Austria).

Results

Consultation data of 670 patients with INR tests recorded between May 2009 and January 2015 were eligible. Of these, 256 patients received VKA treatment for less than 6 months and were thus excluded. Another 199 patients were excluded because of periprocedural interruption of VKA treatment and heparin bridging (Flowchart in Fig. 1). 215 patients treated by 12 physicians fulfilled the inclusion criteria and were included in the analysis. Patient characteristics are summarized in Table 1. The NOAC RCT population included 71’683 patients. Of these, 29’272 were allocated to warfarin treatment. Our patients were similar to the ITT population included in the NOAC RCTs in terms of length of observation (both median 2.2 y), rate of concomitant hypertension (87.9% vs. 88%) and CHADS2-scoring (median 2.7 vs. 2.6). Differences were found in terms of sex, age, rate of concomitant diabetes mellitus and congestive heart failure, creatinine clearance and number of INR tests per year and patient (Table 1). In our study population, more patients were female (50.7% vs. 37.5%) and aged 75 years or older (67.9% vs. 38%). The proportion of patients with concomitant diagnosis of diabetes mellitus was lower than in the NOAC approval studies (18.1% vs. 31%), whereas the proportion of patients with congestive heart failure was higher (61.4% vs. 46.5%). In sum, more patients in our study showed a creatinine clearance of ≥50 ml/min (84.5% [n=115/136] vs. 81.5%), but unlike in the NOAC approval studies, also two (1.5%) patients with creatinine clearance ≤30 ml/min were included. The median number of GP encounters within our study population was 14.5 times per year, and INR was tested every 6 weeks (median 8 tests per year). The NOAC approval studies requested at least monthly follow-up contacts and INR tests in patients receiving warfarin – that is a minimum of 12 tests per year.
Number of chronic conditions other than those leading to an indication for anticoagulant treatment, number of additional drugs taken and liver function parameters (aspartate transferase, AST; alanine transferase, ALT) of the NOAC RCT population have not been publicly published. In our study population, the mean number of concomitant chronic conditions was 5.3 (SD 2.3). Apart from VKA, patients took 7 (SD 4.2) concomitant drugs. Mean values of both AST and ALT were within the reference ranges as specified by the International Federation of Clinical Chemistry and Laboratory Medicine [75], but one patient (n=1/101, 1%) showed values >2 times the upper limit of normal (ULN). Such values constituted an exclusion criteria in the RELY, ARISTOTLE and ENGAGE-AF-TIMI 48 trials [76-78]. No patient showed values >3 times ULN (exclusion criteria in the ROCKET-AF trial [34]).

Time in therapeutic range (TTR)

Individual median INR in our study population was 2.4. Patients spent median 75% of treatment time within the therapeutic range of INR 2−3. Median TTR in the warfarin arm of the NOAC RCTs was 65% (Table 2). In our study, 60.9% of patients reached or exceeded this threshold (TTR ≥65%). The majority of our patients showed good (55.8% with TTR>70%) or moderate (9.8% with TTR 61−70%) anticoagulation control. Poor and ineffective control was found in 20.9% and 13.5%, respectively. The median treatment time in a subtherapeutic INR range (INR<2) was 10.1% (IQR 1.8−29.6%) and the median treatment time above the therapeutic range (INR>3) was 5.5% (IQR 0−17.2%).

Univariable linear regression analysis demonstrated significant associations between lower TTR and patients’ age, sex, number of concomitant chronic conditions and diagnosis of congestive heart failure, and significant associations between higher TTR and length of observation and number of INR tests (Table 3). In the subsequently performed multivariable regression analysis, sex remained a significant predictor of TTR and was significantly modified by age (p=0.0059 for the interaction term sex*age). This result remained unchanged when controlled for a cluster effect originating from GPs. Age was not an independent
predictor of TTR, but a significant interaction between age and sex was found. A cluster effect was not present (Table 4).

Discussion

In this study, we examined the quality of anticoagulant treatment with VKA in Swiss primary care patients, measured by individual TTR. It is the first study of this kind in Switzerland and showed a remarkably high level of TTR control. Median TTR was 75% exceeding not only the median TTR level achieved in the NOAC RCTs but also TTR levels reported from daily practice settings in other Western countries, and is comparable to the data on anticoagulation self-management in Switzerland [79]. This finding ranks Switzerland with the best performing countries, Sweden and the Netherlands, which had previously reported TTR benchmarks of 76% and 81% [49-51].

Previous estimations of the quality of VKA treatment control in Switzerland did not forecast our finding. In the absence of real life data, these estimations were made based on regional analyses of NOAC RCTs. They suggested that TTR levels achieved in Swiss patients would be of minor quality. In the RE-LY trial, for instance, Swiss study centres showed a mean centre TTR of 68% [48]. In the ROCKET-AF trial, mean individual TTR of Swiss patients was below the average baseline TTR of Western Europe (63.2%) [52]. The impact of such estimations must not be underestimated. According to current European guidelines, patients with a TTR below 70% should receive NOAC instead of VKA [38]. Based on the abovementioned estimations of TTR levels achieved in the Swiss healthcare setting, one could conclude that the majority of Swiss patients under VKA treatment had to be switched to NOAC and patients should generally be started on NOAC in order to avoid a few promising but strenuous VKA therapy initiation [71]. Not only would large quantities of therapy changes challenge patients and clinicians, but the mass of new NOAC prescription would also have relevant economic influence on the country’s obligatory health insurance system covering anticoagulant treatment. It has been shown that NOACs can be cost-effective in specific
settings despite higher pharmaceutical costs, because overall costs for anticoagulation-related outpatient visits and hospitalizations were reduced compared to warfarin treatment [80-84]. However, just like clinical outcomes, also cost-efficiency estimations have been demonstrated to depend on TTR levels achieved in the VKA group [85,86].

Our findings, now, reduce concerns about the magnitude of the patient population requiring therapy changes by suggesting that the majority of Swiss patients maintain stable TTR levels and would not require therapy changes. Moreover, regression analysis indicated that TTR was independent of a wide range of patient characteristics. We conclude that all GPs were apparently able to control TTR irrespective of confounding influences.

Strength and limitations

Of course, it needs to be acknowledged that our study sample was small compared to the overall number of patients included in the NOAC RCTs or in foreign observation registries [5,8,24]. One might further argue that there are a number of potential confounders impacting on TTR that we did not include in our regression models. In response to these claims, it is to note that the strength of our study is not only the use of local data, but also setting-specific data. Two aspects are to note:

1) All figures must be seen in proportion to the limited availability of regional data. Numbers of Swiss patients recruited in the RE-LY and ARISTOTLE trials are not publicly published, but it is known that TTR information on Swiss patients in the ROCKET-AF study were derived from only four Swiss patients [87]. In the ENGAGE-AF-TIMI 48 trial, zero Swiss patients received warfarin [88]. In comparison, we present results from 215 patients.

2) It was not the aim of this study to newly identify all potentially imaginable determinants of TTR control. We assessed the impact of those baseline characteristics in our dataset that are known to affect anticoagulation control in order to control for potential confounders.
Thus, our results should not be generalized to other health care settings nor be understood in a way that TTR control is always independent of patient characteristics. It is widely verified that patient characteristics such as concomitant diseases and female sex – also significant in our study – can act as significant predictors of TTR [2,8,12,51,71]. Explanations for these observations are, however, scarce. It is likely that some of the previously reported associations of TTR and patient characteristics are random effects due to multiple testing in very large data samples. On the other hand, it may also be well assumed that the previously observed effects actually reflect underlying differences of patients' health literacy, self-management resources, adherence to medical advice or access to medical care, in brief sociodemographic and infrastructural features of the healthcare setting [89].

The results of our mixed models regression analysis indicate that features of the Swiss primary care setting, other than number of consultations and INR tests, might overrule the effect of patient characteristics on TTR control and ensure stable TTR maintenance. For instance, the point-of-care testing in GP practices is an important feature that is known to influence TTR [90,91]. It will be a task of future research to examine this hypothesis with adequate methods.

It was the aim of our study to evaluate TTR control in the circumscribed setting of Swiss primary care and call one-size-fits-all recommendations of first-line anticoagulant treatment into question. Indeed, our results highlight the importance of local and setting-specific TTR assessments by demonstrating that real-life TTR outcomes in individual health care settings may deviate from expected values derived from RCTs or observation studies in foreign health care systems. It is important to note that our patients achieved better TTR results than the NOAC control group population, even though our patients were remarkably older than the NOAC ITT population and presented a lot of concomitant chronic diseases and polypharmacy. This raises concerns about the «gold standard» of VKA treatment that served as a reference in the NOAC RCTs and should be taken into account when deriving practice guidelines from RCT results. Initial observations indicating that patients enrolled in NOAC RCTs are only partly representative of patients with atrial fibrillation in clinical practice were
made in Korea [92]. Our study confirms these findings now within a European context, but unlike the Korean study, we found that when TTR is considered, fewer patients than expected would require NOAC therapy instead of VKA.

Of course, TTR should not be the only basis of decision-making. Bleeding events are another reason for switching to NOACs, but were out of scope of this study. None of the observed patients stopped VKA treatment because of bleeding events, but information on patients was limited to GPs medical record entries. Thus, occurrence of bleeding events leading to consultation of other healthcare providers cannot be ruled out entirely. Bleeding prevalence in Swiss VKA patients should be examined in a next step.

The burden of treatment should also be considered when selecting anticoagulant agents, and in many situations the ease of use will speak in favor of NOACs. Nevertheless, it must be acknowledged that periodical INR monitoring required under VKA treatment imposes not necessarily a burden for patients and primary physicians. A recent study suggested that it could also enhance patient-physician relation and therapy adherence and offer opportunities for the physician to provide additional care to patients, such as adjusting the dosage of antihypertensive drugs, giving smoking cessation advice or treating high cholesterol [93]. Our findings now show that concomitant comprehensive care for other conditions does not impair physicians’ resources in controlling INR and ensuring high quality TTR control. This is of particular relevance for daily practice in primary care worldwide, given the high prevalence of multimorbidity in primary care patients [94].

As long as published data on NOAC use in elderly, multimorbid patient populations is scarce, general recommendations of NOACs as first-line treatment in such patients should be taken with caution. In the meantime, physicians should instead tailor anticoagulation management according to the individual needs of their patients with regard to the heterogeneity, age, multimorbidity and risk profile of patients in primary care settings. Our findings show that high quality TTR can be achieved even in such vulnerable patients.
Conclusion

Choice of anticoagulant agents is a complex medical decision and should be taken in comprehensive view of patients’ individual risk-benefit profile. Practitioners should consider that the non-inferiority of NOACs has been proven in RCTs which enrolled patients who are only partly representative of patients in primary care, particularly in terms of TTR maintenance when receiving VKA treatment. The observed majority of our patients would not require an immediate switch to NOACs due to low-quality TTR. Further research is needed in order to identify specific features of care management that are associated with these outcomes, since most patients’ characteristics were insignificant predictors of TTR.

Authors contributions

S.D., O.S., D.M. and B.G. developed the study protocol. S.D. and F.V. extracted and analyzed data. S.D. drafted the manuscript. All authors read and approved the final manuscript.
References:

37. Palareti G. Direct oral anticoagulants and bleeding risk (in comparison to vitamin K antagonists and heparins), and the treatment of bleeding. *Seminars in hematology* 2014; 51: 102-111.

78. Ruff CT, Giugliano RP, Antman EM et al. Evaluation of the novel factor Xa inhibitor edoxaban compared with warfarin in patients with atrial fibrillation: design and rationale for the Effective
aNTicoagulation with factor xA next GEneration in Atrial Fibrillation-Thrombolysis In Myocardial Infarction study 48 (ENGAGE AF-TIMI 48). American heart journal 2010; 160: 635-641.

86. You JH. Novel oral anticoagulants versus warfarin therapy at various levels of anticoagulation control in atrial fibrillation—a cost-effectiveness analysis. *Journal of general internal medicine* 2014; 29: 438-446.

Fig. 1: Flow chart of study sample selection – patients with VKA therapy

670 eligible primary care patients from FIRE database with recorded INR results

- Exclusion

414 (61.8%) patients with prescribed VKA treatment for ≥ 6 month

- Exclusion

- TTR Analysis:

215 (51.9%) patients without intermittent use of heparins

- 256 (38.2%) patients with prescribed VKA treatment for <6 month

- 199 (48.1%) patients with intermittent use of heparins
Tab. 1: Baseline characteristics of included patients in comparison to the intention-to-treat population of the NOAC approval studies

<table>
<thead>
<tr>
<th>Baseline characteristics</th>
<th>Included patients (n=215)</th>
<th>Combined ITT population included in the RE-LY, ROCKET AF, ARISTOTLE, and ENGAGE AF–TIMI 48 trials (n=71'683)‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>106 (49.3%)</td>
<td>62.5%</td>
</tr>
<tr>
<td>Female</td>
<td>109 (50.7%)</td>
<td>37.5%</td>
</tr>
<tr>
<td>Age (y)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean, SD</td>
<td>77.2, 11.8</td>
<td>71.6</td>
</tr>
<tr>
<td>Patients ≥75 y</td>
<td>146 (67.9%)</td>
<td>38%</td>
</tr>
<tr>
<td>Indication for anticoagulant treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-valvular atrial fibrillation</td>
<td>104 (48.4%)</td>
<td>71'683 (100%)</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>15 (7.0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Recurrent deep vein thrombosis</td>
<td>11 (5.1%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Missing information</td>
<td>82 (38.1%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Chronic conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients with ≥1 chronic condition</td>
<td>214 (99.5%)</td>
<td>NA</td>
</tr>
<tr>
<td>Number of chronic conditions (mean, SD)</td>
<td>5.3, 2.3</td>
<td>NA</td>
</tr>
<tr>
<td>Hypertension (n,%)</td>
<td>189 (87.9%)</td>
<td>88%</td>
</tr>
<tr>
<td>Diabetes mellitus (n,%)</td>
<td>39 (18.1%)</td>
<td>31%</td>
</tr>
<tr>
<td>Congestive heart failure (n,%)</td>
<td>132 (61.4%)</td>
<td>46.5%</td>
</tr>
<tr>
<td>Concomitant long-term medication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients with ≥1 concomitant drugs</td>
<td>207 (96.3%)</td>
<td>NA</td>
</tr>
<tr>
<td>Number of concomitant drugs (mean, SD)</td>
<td>7, 4.2</td>
<td>NA</td>
</tr>
<tr>
<td>Observation period (y)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>median, IQR</td>
<td>2.2, 1.5-4.1</td>
<td>2.2</td>
</tr>
<tr>
<td>Number of contacts per year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>median, IQR</td>
<td>14.5, 9.4-23.5</td>
<td>NA</td>
</tr>
<tr>
<td>Number of INR tests per year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>median, IQR</td>
<td>8.0, 5.2-11.8</td>
<td>12 (at least 1/month)</td>
</tr>
<tr>
<td>CHAD2-Score of stroke risk*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean, SD</td>
<td>2.7, 1.2</td>
<td>2.6, 1.0</td>
</tr>
<tr>
<td>Score (n,%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>9 (8.7%)</td>
<td>17%</td>
</tr>
<tr>
<td>2</td>
<td>31 (29.8%)</td>
<td>34%</td>
</tr>
<tr>
<td>3-6</td>
<td>64 (61.5%)</td>
<td>49%</td>
</tr>
<tr>
<td>Creatinine clearance (ml/min)**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFR (mean, SD)</td>
<td>73.4, 22.9</td>
<td>NA</td>
</tr>
<tr>
<td>≥50 ml/min</td>
<td>115 (84.6%)</td>
<td>81%</td>
</tr>
<tr>
<td><50 ml/min (n,%)</td>
<td>21 (15.4%)</td>
<td>19%</td>
</tr>
<tr>
<td>≤30 ml/min (n,%)</td>
<td>2 (1.5%)</td>
<td>exclusion criterion</td>
</tr>
<tr>
<td>Liver function enzymes (U/l)***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST (mean, SD)</td>
<td>20.4, 7.7</td>
<td>NA</td>
</tr>
<tr>
<td>ALT (mean, SD)</td>
<td>19.3, 14.3</td>
<td>NA</td>
</tr>
<tr>
<td>>2 ULN (n,%)</td>
<td>1 (1.0%)</td>
<td>exclusion criterion</td>
</tr>
</tbody>
</table>

* data calculated from n=104 (48.4%) of included patients with ICPC diagnosis of Atrial Fibrillation

** data available from n=136 (63.3%) of included patients

*** data available from n=101 (47.0%) of included patients

‡ data calculated from published data in [33]; ITT: intention-to-treat; SD: standard deviation; IQR: interquartile range; INR: international normalized ratio; GFR: glomerular filtration rate; AST: aspartate transferase; ALT: alanine transferase; ULN: upper limit of normal
Tab. 2: INR and Time in therapeutic range (TTR) achieved in the study population in comparison to the intention-to-treat population of the NOAC approval studies

<table>
<thead>
<tr>
<th>Study population (n=215)</th>
<th>Combined ITT population receiving Warfarin in the RE-LY, ROCKET AF, ARISTOTLE, and ENGAGE AF–TIMI 48 trials (n=29,272)‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual median INR (IQR)</td>
<td>2.4 (2.2 – 2.6)</td>
</tr>
<tr>
<td>Individual median TTR (IQR)</td>
<td>75% (53% – 89%)</td>
</tr>
</tbody>
</table>

‡ data from [33]

INR: international normalized ratio; TTR: time in therapeutic range; IQR: interquartile range

Tab. 3: Coefficients and 95%CIs from univariable regression models

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>CI 95%</th>
<th>p-value‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>-0.005</td>
<td>-0.008 – -0.002</td>
<td>0.0004 *</td>
</tr>
<tr>
<td>Sex (female)</td>
<td>-0.138</td>
<td>-0.204 – -0.073</td>
<td>0.0001 *</td>
</tr>
<tr>
<td>Number of chronic conditions</td>
<td>-0.016</td>
<td>-0.031 – -0.001</td>
<td>0.0326 *</td>
</tr>
<tr>
<td>Number of concomitant drugs</td>
<td>-0.007</td>
<td>-0.015 – 0.001</td>
<td>0.1015</td>
</tr>
<tr>
<td>Hypertension</td>
<td>-0.083</td>
<td>-0.189 – 0.023</td>
<td>0.1265</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>-0.056</td>
<td>-0.144 – 0.033</td>
<td>0.2177</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>-0.072</td>
<td>-0.142 – -0.003</td>
<td>0.0426 *</td>
</tr>
<tr>
<td>Glomerular filtration rate (ml/min)</td>
<td>0.000</td>
<td>-0.001 – 0.001</td>
<td>0.9784</td>
</tr>
<tr>
<td>CHAD$_{2}$-Score of stroke risk</td>
<td>-0.010</td>
<td>-0.065 – 0.046</td>
<td>0.7314</td>
</tr>
<tr>
<td>Length of observation (years)</td>
<td>0.028</td>
<td>0.005 – 0.050</td>
<td>0.0155 *</td>
</tr>
<tr>
<td>Number of consultations</td>
<td>0.000</td>
<td>-0.001 – 0.001</td>
<td>0.5543</td>
</tr>
<tr>
<td>Number of INR tests</td>
<td>0.002</td>
<td>0.000 – 0.004</td>
<td>0.0629 *</td>
</tr>
</tbody>
</table>

‡significance level p<0.1, significant values are marked with an asterisk
Tab. 4: Coefficients and 95% CIs from a multivariable regression model (mixed model):

TTR=age*sex+number of chronic conditions+congestive heart failure+length of observation+number of INR tests with GP as random variable

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>CI 95%</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>-4.3E-05</td>
<td>-0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>Sex (female)</td>
<td>-0.105</td>
<td>-0.173</td>
<td>-0.038</td>
</tr>
<tr>
<td>Age*Sex (female)</td>
<td>-0.009</td>
<td>-0.015</td>
<td>-0.003</td>
</tr>
<tr>
<td>Number of chronic conditions</td>
<td>-0.013</td>
<td>-0.029</td>
<td>0.003</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>-0.027</td>
<td>-0.102</td>
<td>0.048</td>
</tr>
<tr>
<td>Length of observation (years)</td>
<td>0.012</td>
<td>-0.018</td>
<td>0.043</td>
</tr>
<tr>
<td>Number of INR tests</td>
<td>0.002</td>
<td>-0.001</td>
<td>0.004</td>
</tr>
</tbody>
</table>

*significance level p<0.05, significant values are marked with an asterisk