Header

UZH-Logo

Maintenance Infos

Controlled single-cell deposition and patterning by highly flexible hollow cantilevers


Martinez, Vincent; Forró, Csaba; Weydert, Serge; Aebersold, Mathias J; Dermutz, Harald; Guillaume-Gentil, Orane; Zambelli, Tomaso; Vörös, János; Demkó, László (2016). Controlled single-cell deposition and patterning by highly flexible hollow cantilevers. Lab on a chip, 16(9):1663-1674.

Abstract

Single-cell patterning represents a key approach to decouple and better understand the role and mechanisms of individual cells of a given population. In particular, the bottom-up approach of engineering neuronal circuits with a controlled topology holds immense promises to perceive the relationships between connectivity and function. In order to accommodate these efforts, highly flexible SU-8 cantilevers with integrated microchannels have been fabricated for both additive and subtractive patterning. By directly squeezing out single cells onto adhesive surfaces, controlled deposition with a spatial accuracy of 5 μm could be achieved, while subtractive patterning has been realized by selective removal of targeted single cells. Complex cell patterns were created on substrates pre-patterned with cell-adhesive and repulsive areas, preserving the original pattern geometry for long-term studies. For example, a circular loop with a diameter of 530 μm has been realized using primary hippocampal neurons, which were fully connected to their respective neighbors along the loop. Using the same cantilevers, the versatility of the technique has also been demonstrated via in situ modification of already mature neuronal cultures by both detaching individual cells of the population and adding fresh ones, incorporating them into the culture.

Abstract

Single-cell patterning represents a key approach to decouple and better understand the role and mechanisms of individual cells of a given population. In particular, the bottom-up approach of engineering neuronal circuits with a controlled topology holds immense promises to perceive the relationships between connectivity and function. In order to accommodate these efforts, highly flexible SU-8 cantilevers with integrated microchannels have been fabricated for both additive and subtractive patterning. By directly squeezing out single cells onto adhesive surfaces, controlled deposition with a spatial accuracy of 5 μm could be achieved, while subtractive patterning has been realized by selective removal of targeted single cells. Complex cell patterns were created on substrates pre-patterned with cell-adhesive and repulsive areas, preserving the original pattern geometry for long-term studies. For example, a circular loop with a diameter of 530 μm has been realized using primary hippocampal neurons, which were fully connected to their respective neighbors along the loop. Using the same cantilevers, the versatility of the technique has also been demonstrated via in situ modification of already mature neuronal cultures by both detaching individual cells of the population and adding fresh ones, incorporating them into the culture.

Statistics

Citations

Dimensions.ai Metrics
6 citations in Web of Science®
4 citations in Scopus®
7 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 18 Jul 2016
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2016
Deposited On:18 Jul 2016 08:42
Last Modified:02 Feb 2018 10:10
Publisher:Royal Society of Chemistry
ISSN:1473-0189
OA Status:Closed
Publisher DOI:https://doi.org/10.1039/C5LC01466B
PubMed ID:27046017

Download