Header

UZH-Logo

Maintenance Infos

Directed evolution of G protein-coupled receptors in yeast for higher functional production in eukaryotic expression hosts


Schütz, Marco; Schöppe, Jendrik; Sedlák, Erik; Hillenbrand, Matthias; Nagy-Davidescu, Gabriela; Ehrenmann, Janosch; Klenk, Christoph; Egloff, Pascal; Kummer, Lutz; Plückthun, Andreas (2016). Directed evolution of G protein-coupled receptors in yeast for higher functional production in eukaryotic expression hosts. Scientific Reports, 6:21508.

Abstract

Despite recent successes, many G protein-coupled receptors (GPCRs) remained refractory to detailed molecular studies due to insufficient production yields, even in the most sophisticated eukaryotic expression systems. Here we introduce a robust method employing directed evolution of GPCRs in yeast that allows fast and efficient generation of receptor variants which show strongly increased functional production levels in eukaryotic expression hosts. Shown by evolving three different receptors in this study, the method is widely applicable, even for GPCRs which are very difficult to express. The evolved variants showed up to a 26-fold increase of functional production in insect cells compared to the wild-type receptors. Next to the increased production, the obtained variants exhibited improved biophysical properties, while functional properties remained largely unaffected. Thus, the presented method broadens the portfolio of GPCRs accessible for detailed investigations. Interestingly, the functional production of GPCRs in yeast can be further increased by induced host adaptation.

Abstract

Despite recent successes, many G protein-coupled receptors (GPCRs) remained refractory to detailed molecular studies due to insufficient production yields, even in the most sophisticated eukaryotic expression systems. Here we introduce a robust method employing directed evolution of GPCRs in yeast that allows fast and efficient generation of receptor variants which show strongly increased functional production levels in eukaryotic expression hosts. Shown by evolving three different receptors in this study, the method is widely applicable, even for GPCRs which are very difficult to express. The evolved variants showed up to a 26-fold increase of functional production in insect cells compared to the wild-type receptors. Next to the increased production, the obtained variants exhibited improved biophysical properties, while functional properties remained largely unaffected. Thus, the presented method broadens the portfolio of GPCRs accessible for detailed investigations. Interestingly, the functional production of GPCRs in yeast can be further increased by induced host adaptation.

Statistics

Citations

1 citation in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

7 downloads since deposited on 18 Jul 2016
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2016
Deposited On:18 Jul 2016 12:06
Last Modified:06 Aug 2017 02:39
Publisher:Nature Publishing Group
ISSN:2045-2322
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/srep21508
Related URLs:http://www.zora.uzh.ch/113152/
PubMed ID:26911446

Download

Download PDF  'Directed evolution of G protein-coupled receptors in yeast for higher functional production in eukaryotic expression hosts'.
Preview
Content: Published Version
Filetype: PDF
Size: 7MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)