Header

UZH-Logo

Maintenance Infos

Specific Inhibition of β-Secretase Processing of the Alzheimer Disease Amyloid Precursor Protein


Ben Halima, Saoussen; Mishra, Sabyashachi; Raja, K Muruga Poopathi; Willem, Michael; Baici, Antonio; Simons, Kai; Brüstle, Oliver; Koch, Philipp; Haass, Christian; Caflisch, Amedeo; Rajendran, Lawrence (2016). Specific Inhibition of β-Secretase Processing of the Alzheimer Disease Amyloid Precursor Protein. Cell Reports, 14(9):2127-2141.

Abstract

Development of disease-modifying therapeutics is urgently needed for treating Alzheimer disease (AD). AD is characterized by toxic β-amyloid (Aβ) peptides produced by β- and γ-secretase-mediated cleavage of the amyloid precursor protein (APP). β-secretase inhibitors reduce Aβ levels, but mechanism-based side effects arise because they also inhibit β-cleavage of non-amyloid substrates like Neuregulin. We report that β-secretase has a higher affinity for Neuregulin than it does for APP. Kinetic studies demonstrate that the affinities and catalytic efficiencies of β-secretase are higher toward non-amyloid substrates than toward APP. We show that non-amyloid substrates are processed by β-secretase in an endocytosis-independent manner. Exploiting this compartmentalization of substrates, we specifically target the endosomal β-secretase by an endosomally targeted β-secretase inhibitor, which blocked cleavage of APP but not non-amyloid substrates in many cell systems, including induced pluripotent stem cell (iPSC)-derived neurons. β-secretase inhibitors can be designed to specifically inhibit the Alzheimer process, enhancing their potential as AD therapeutics without undesired side effects.

Abstract

Development of disease-modifying therapeutics is urgently needed for treating Alzheimer disease (AD). AD is characterized by toxic β-amyloid (Aβ) peptides produced by β- and γ-secretase-mediated cleavage of the amyloid precursor protein (APP). β-secretase inhibitors reduce Aβ levels, but mechanism-based side effects arise because they also inhibit β-cleavage of non-amyloid substrates like Neuregulin. We report that β-secretase has a higher affinity for Neuregulin than it does for APP. Kinetic studies demonstrate that the affinities and catalytic efficiencies of β-secretase are higher toward non-amyloid substrates than toward APP. We show that non-amyloid substrates are processed by β-secretase in an endocytosis-independent manner. Exploiting this compartmentalization of substrates, we specifically target the endosomal β-secretase by an endosomally targeted β-secretase inhibitor, which blocked cleavage of APP but not non-amyloid substrates in many cell systems, including induced pluripotent stem cell (iPSC)-derived neurons. β-secretase inhibitors can be designed to specifically inhibit the Alzheimer process, enhancing their potential as AD therapeutics without undesired side effects.

Statistics

Citations

Dimensions.ai Metrics
9 citations in Web of Science®
11 citations in Scopus®
11 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

28 downloads since deposited on 18 Jul 2016
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry

04 Faculty of Medicine > Institute for Regenerative Medicine (IREM)
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:8 March 2016
Deposited On:18 Jul 2016 12:09
Last Modified:02 Feb 2018 10:11
Publisher:Cell Press (Elsevier)
ISSN:2211-1247
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.celrep.2016.01.076
PubMed ID:26923602

Download

Download PDF  'Specific Inhibition of β-Secretase Processing of the Alzheimer Disease Amyloid Precursor Protein'.
Preview
Content: Published Version
Filetype: PDF
Size: 4MB
View at publisher
Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)