Header

UZH-Logo

Maintenance Infos

Data-collection strategy for challenging native SAD phasing


Olieric, Vincent; Weinert, Tobias; Finke, Aaron D; Anders, Carolin; Li, Dianfan; Olieric, Natacha; Borca, Camelia N; Steinmetz, Michel O; Caffrey, Martin; Jinek, Martin; Wang, Meitian (2016). Data-collection strategy for challenging native SAD phasing. Acta Crystallographica. Section D: Structural Biology, 72(Pt 3):421-429.

Abstract

Recent improvements in data-collection strategies have pushed the limits of native SAD (single-wavelength anomalous diffraction) phasing, a method that uses the weak anomalous signal of light elements naturally present in macromolecules. These involve the merging of multiple data sets from either multiple crystals or from a single crystal collected in multiple orientations at a low X-ray dose. Both approaches yield data of high multiplicity while minimizing radiation damage and systematic error, thus ensuring accurate measurements of the anomalous differences. Here, the combined use of these two strategies is described to solve cases of native SAD phasing that were particular challenges: the integral membrane diacylglycerol kinase (DgkA) with a low Bijvoet ratio of 1% and the large 200 kDa complex of the CRISPR-associated endonuclease (Cas9) bound to guide RNA and target DNA crystallized in the low-symmetry space group C2. The optimal native SAD data-collection strategy based on systematic measurements performed on the 266 kDa multiprotein/multiligand tubulin complex is discussed.

Abstract

Recent improvements in data-collection strategies have pushed the limits of native SAD (single-wavelength anomalous diffraction) phasing, a method that uses the weak anomalous signal of light elements naturally present in macromolecules. These involve the merging of multiple data sets from either multiple crystals or from a single crystal collected in multiple orientations at a low X-ray dose. Both approaches yield data of high multiplicity while minimizing radiation damage and systematic error, thus ensuring accurate measurements of the anomalous differences. Here, the combined use of these two strategies is described to solve cases of native SAD phasing that were particular challenges: the integral membrane diacylglycerol kinase (DgkA) with a low Bijvoet ratio of 1% and the large 200 kDa complex of the CRISPR-associated endonuclease (Cas9) bound to guide RNA and target DNA crystallized in the low-symmetry space group C2. The optimal native SAD data-collection strategy based on systematic measurements performed on the 266 kDa multiprotein/multiligand tubulin complex is discussed.

Statistics

Citations

6 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

14 downloads since deposited on 25 Jul 2016
13 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:March 2016
Deposited On:25 Jul 2016 12:11
Last Modified:04 Aug 2017 11:17
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:2059-7983
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1107/S2059798315024110
PubMed ID:26960129

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher