Header

UZH-Logo

Maintenance Infos

From porphyrins to pyrphyrins: adsorption study and metalation of a molecular catalyst on Au(111)


Mette, Gerson; Sutter, Denys; Gurdal, Yeliz; Schnidrig, Stephan; Probst, Benjamin; Iannuzzi, Marcella; Hutter, Jürg; Alberto, Roger; Osterwalder, Jürg (2016). From porphyrins to pyrphyrins: adsorption study and metalation of a molecular catalyst on Au(111). Nanoscale, 8(15):7958-68.

Abstract

The molecular ligand pyrphyrin, a tetradentate bipyridine based macrocycle, represents an interesting but widely unexplored class of molecules. It resembles the well-known porphyrin, but consists of pyridyl subunits instead of pyrroles. Metal complexes based on pyrphyrin ligands have recently shown promise as water reduction catalysts in homogeneous photochemical water splitting reactions. In this study, the adsorption and metalation of pyrphyrin on a single crystalline Au(111) surface is investigated in an ultrahigh vacuum by means of scanning tunneling microscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy and density functional theory. Pyrphyrin coverages of approximately one monolayer and less are obtained by sublimation of the molecules on the substrate kept at room temperature. The molecules self-assemble in two distinct phases of long-range molecular ordering depending on the surface coverage. The deposition of cobalt metal and subsequent annealing lead to the formation of Co-ligated pyrphyrin molecules accompanied by a pronounced change of the molecular self-assembly. Electronic structure calculations taking the herringbone reconstruction of Au(111) into account show that the molecules are physisorbed, but preferred adsorption sites are identified where Co and the N atoms of the two terminal cyano groups are optimally coordinated to the surface Au atoms. An intermediate state of the metalation reaction is observed and the reaction steps for the Co metalation of pyrphyrin molecules on Au(111) are established in a joint experimental and computational effort.

Abstract

The molecular ligand pyrphyrin, a tetradentate bipyridine based macrocycle, represents an interesting but widely unexplored class of molecules. It resembles the well-known porphyrin, but consists of pyridyl subunits instead of pyrroles. Metal complexes based on pyrphyrin ligands have recently shown promise as water reduction catalysts in homogeneous photochemical water splitting reactions. In this study, the adsorption and metalation of pyrphyrin on a single crystalline Au(111) surface is investigated in an ultrahigh vacuum by means of scanning tunneling microscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy and density functional theory. Pyrphyrin coverages of approximately one monolayer and less are obtained by sublimation of the molecules on the substrate kept at room temperature. The molecules self-assemble in two distinct phases of long-range molecular ordering depending on the surface coverage. The deposition of cobalt metal and subsequent annealing lead to the formation of Co-ligated pyrphyrin molecules accompanied by a pronounced change of the molecular self-assembly. Electronic structure calculations taking the herringbone reconstruction of Au(111) into account show that the molecules are physisorbed, but preferred adsorption sites are identified where Co and the N atoms of the two terminal cyano groups are optimally coordinated to the surface Au atoms. An intermediate state of the metalation reaction is observed and the reaction steps for the Co metalation of pyrphyrin molecules on Au(111) are established in a joint experimental and computational effort.

Statistics

Citations

7 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

46 downloads since deposited on 04 Aug 2016
35 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
540 Chemistry
Language:English
Date:14 April 2016
Deposited On:04 Aug 2016 07:17
Last Modified:08 Dec 2017 20:02
Publisher:Royal Society of Chemistry
ISSN:2040-3364
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1039/c5nr08953k
PubMed ID:27006307

Download

Download PDF  'From porphyrins to pyrphyrins: adsorption study and metalation of a molecular catalyst on Au(111)'.
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 3.0 Unported (CC BY 3.0)