Header

UZH-Logo

Maintenance Infos

Red cell properties after different modes of blood transportation


Abstract

Transportation of blood samples is unavoidable for assessment of specific parameters in blood of patients with rare anemias, blood doping testing, or for research purposes. Despite the awareness that shipment may substantially alter multiple parameters, no study of that extent has been performed to assess these changes and optimize shipment conditions to reduce transportation-related artifacts. Here we investigate the changes in multiple parameters in blood of healthy donors over 72 h of simulated shipment conditions. Three different anticoagulants (K3EDTA, Sodium Heparin, and citrate-based CPDA) for two temperatures (4°C and room temperature) were tested to define the optimal transportation conditions. Parameters measured cover common cytology and biochemistry parameters (complete blood count, hematocrit, morphological examination), red blood cell (RBC) volume, ion content and density, membrane properties and stability (hemolysis, osmotic fragility, membrane heat stability, patch-clamp investigations, and formation of micro vesicles), Ca(2+) handling, RBC metabolism, activity of numerous enzymes, and O2 transport capacity. Our findings indicate that individual sets of parameters may require different shipment settings (anticoagulants, temperature). Most of the parameters except for ion (Na(+), K(+), Ca(2+)) handling and, possibly, reticulocytes counts, tend to favor transportation at 4°C. Whereas plasma and intraerythrocytic Ca(2+) cannot be accurately measured in the presence of chelators such as citrate and EDTA, the majority of Ca(2+)-dependent parameters are stabilized in CPDA samples. Even in blood samples from healthy donors transported using an optimized shipment protocol, the majority of parameters were stable within 24 h, a condition that may not hold for the samples of patients with rare anemias. This implies for as short as possible shipping using fast courier services to the closest expert laboratory at reach. Mobile laboratories or the travel of the patients to the specialized laboratories may be the only option for some groups of patients with highly unstable RBCs.

Abstract

Transportation of blood samples is unavoidable for assessment of specific parameters in blood of patients with rare anemias, blood doping testing, or for research purposes. Despite the awareness that shipment may substantially alter multiple parameters, no study of that extent has been performed to assess these changes and optimize shipment conditions to reduce transportation-related artifacts. Here we investigate the changes in multiple parameters in blood of healthy donors over 72 h of simulated shipment conditions. Three different anticoagulants (K3EDTA, Sodium Heparin, and citrate-based CPDA) for two temperatures (4°C and room temperature) were tested to define the optimal transportation conditions. Parameters measured cover common cytology and biochemistry parameters (complete blood count, hematocrit, morphological examination), red blood cell (RBC) volume, ion content and density, membrane properties and stability (hemolysis, osmotic fragility, membrane heat stability, patch-clamp investigations, and formation of micro vesicles), Ca(2+) handling, RBC metabolism, activity of numerous enzymes, and O2 transport capacity. Our findings indicate that individual sets of parameters may require different shipment settings (anticoagulants, temperature). Most of the parameters except for ion (Na(+), K(+), Ca(2+)) handling and, possibly, reticulocytes counts, tend to favor transportation at 4°C. Whereas plasma and intraerythrocytic Ca(2+) cannot be accurately measured in the presence of chelators such as citrate and EDTA, the majority of Ca(2+)-dependent parameters are stabilized in CPDA samples. Even in blood samples from healthy donors transported using an optimized shipment protocol, the majority of parameters were stable within 24 h, a condition that may not hold for the samples of patients with rare anemias. This implies for as short as possible shipping using fast courier services to the closest expert laboratory at reach. Mobile laboratories or the travel of the patients to the specialized laboratories may be the only option for some groups of patients with highly unstable RBCs.

Statistics

Citations

Dimensions.ai Metrics
13 citations in Web of Science®
13 citations in Scopus®
10 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

32 downloads since deposited on 05 Aug 2016
21 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
05 Vetsuisse Faculty > Institute of Veterinary Physiology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2016
Deposited On:05 Aug 2016 09:30
Last Modified:02 Feb 2018 10:14
Publisher:Frontiers Research Foundation
ISSN:1664-042X
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.3389/fphys.2016.00288
PubMed ID:27471472
Project Information:
  • : FunderFP7
  • : Grant ID602121
  • : Project TitleCOMMITMENT - Combined Molecular Microscopy for Therapy and Personalized Medication in Rare Anaemias Treatments

Download

Download PDF  'Red cell properties after different modes of blood transportation'.
Preview
Content: Published Version
Filetype: PDF
Size: 8MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)