Header

UZH-Logo

Maintenance Infos

SymmSketch: creating symmetric 3D free-form shapes from 2D sketches


Miao, Yong-Wei; Hu, Feixia; Zhang, Xudong; Chen, Jiazhou; Pajarola, Renato (2015). SymmSketch: creating symmetric 3D free-form shapes from 2D sketches. Computational Visual Media, 1(1):3-16.

Abstract

This paper presents SymmSketch — a system for creating symmetric 3D free-form shapes from 2D sketches. The reconstruction task usually separates a 3D symmetric shape into two types of shape components, that is, the self-symmetric shape component and the mutual-symmetric shape components. Each type of them can be created in an intuitive manner. According to a uniform symmetry plane, the user first draws 2D sketch lines for each shape component on a sketching plane. The z- depth information of the hand-drawn input sketches can be calculated using their property of mirror symmetry to generate 3D constructive curves. In order to provide more freedom for controlling the local geometric features of the reconstructed free- form shapes (such as their cross sections will not be limited to be traditional circular), our modeling system will create each shape component from four constructive curves. With one pair of symmetric curves and one pair of general curves, an improved cross-sectional surface blending scheme is applied to generate a parametric surface for each component. The final symmetric free- form shape will be progressively created and be represented as 3D triangular mesh. Experimental results illustrate that our system can generate symmetric complex free-form shapes effectively and conveniently.

Abstract

This paper presents SymmSketch — a system for creating symmetric 3D free-form shapes from 2D sketches. The reconstruction task usually separates a 3D symmetric shape into two types of shape components, that is, the self-symmetric shape component and the mutual-symmetric shape components. Each type of them can be created in an intuitive manner. According to a uniform symmetry plane, the user first draws 2D sketch lines for each shape component on a sketching plane. The z- depth information of the hand-drawn input sketches can be calculated using their property of mirror symmetry to generate 3D constructive curves. In order to provide more freedom for controlling the local geometric features of the reconstructed free- form shapes (such as their cross sections will not be limited to be traditional circular), our modeling system will create each shape component from four constructive curves. With one pair of symmetric curves and one pair of general curves, an improved cross-sectional surface blending scheme is applied to generate a parametric surface for each component. The final symmetric free- form shape will be progressively created and be represented as 3D triangular mesh. Experimental results illustrate that our system can generate symmetric complex free-form shapes effectively and conveniently.

Statistics

Altmetrics

Downloads

11 downloads since deposited on 12 Aug 2016
10 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
Dewey Decimal Classification:000 Computer science, knowledge & systems
Uncontrolled Keywords:graphics, geometric modeling, shape modelling
Language:English
Date:March 2015
Deposited On:12 Aug 2016 07:04
Last Modified:04 Jul 2017 14:41
Publisher:SpringerOpen
ISSN:2096-0433
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1007/s41095-015-0002-8
Other Identification Number:merlin-id:12952

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)
Preview Icon on Download
Preview
Filetype: PDF
Size: 10MB
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations