Header

UZH-Logo

Maintenance Infos

Influence of ruminal methane on digesta retention and digestive physiology in non-lactating dairy cattle


Dittmann, Marie T; Hammond, Kirsty J; Kirton, Paul; Humphries, David J; Crompton, Les A; Ortmann, Sylvia; Misselbrook, Tom H; Südekum, Karl-Heinz; Schwarm, Angela; Kreuzer, Michael; Reynolds, Christopher K; Clauss, Marcus (2016). Influence of ruminal methane on digesta retention and digestive physiology in non-lactating dairy cattle. The British Journal of Nutrition, 116(5):763-773.

Abstract

Enteric methane (CH4) production is a side-effect of herbivore digestion, but it is unknown whether CH4 itself influences digestive physiology. We investigated the effect of adding CH4 to, or reducing it in, the reticulorumen (RR) in a 4 × 4 Latin square experiment with rumen-fistulated, non-lactating cows, with four treatments: (i) control, (ii) insufflation of CH4 (iCH4), (iii) N via rumen fistula, (iv) reduction of CH4 via administration of bromochloromethane (BCM). DM intake (DMI), apparent total tract digestibility, digesta mean retention times (MRT), rumen motility and chewing activity, spot breath CH4 emission (CH4exhal, litre/kg DMI) as well as CH4 dissolved in rumen fluid (CH4RRf, μg/ml) were measured. Data were analysed using mixed models, including treatment (or, alternatively, CH4exhal or CH4RRf) and DMI relative to body mass0·85 (rDMI) as covariates. rDMI was the lowest on the BCM treatment. CH4exhal was highest for iCH4 and lowest for BCM treatments, whereas only BCM affected (reduced) CH4RRf. After adjusting for rDMI, CH4RRf had a negative association with MRT in the gastrointestinal tract but not in the RR, and negative associations with fibre digestibility and measures of rumination activity. Adjusting for rDMI, CH4exhal had additionally a negative association with particle MRT in the RR and a positive association with rumen motility. Thus, higher rumen levels of CH4 (CH4exhal or CH4RRf) were associated with shorter MRT and increased motility. These findings are tentatively interpreted as a feedback mechanism in the ruminant digestive tract that aims at mitigating CH4 losses by shortening MRT at higher CH4.

Abstract

Enteric methane (CH4) production is a side-effect of herbivore digestion, but it is unknown whether CH4 itself influences digestive physiology. We investigated the effect of adding CH4 to, or reducing it in, the reticulorumen (RR) in a 4 × 4 Latin square experiment with rumen-fistulated, non-lactating cows, with four treatments: (i) control, (ii) insufflation of CH4 (iCH4), (iii) N via rumen fistula, (iv) reduction of CH4 via administration of bromochloromethane (BCM). DM intake (DMI), apparent total tract digestibility, digesta mean retention times (MRT), rumen motility and chewing activity, spot breath CH4 emission (CH4exhal, litre/kg DMI) as well as CH4 dissolved in rumen fluid (CH4RRf, μg/ml) were measured. Data were analysed using mixed models, including treatment (or, alternatively, CH4exhal or CH4RRf) and DMI relative to body mass0·85 (rDMI) as covariates. rDMI was the lowest on the BCM treatment. CH4exhal was highest for iCH4 and lowest for BCM treatments, whereas only BCM affected (reduced) CH4RRf. After adjusting for rDMI, CH4RRf had a negative association with MRT in the gastrointestinal tract but not in the RR, and negative associations with fibre digestibility and measures of rumination activity. Adjusting for rDMI, CH4exhal had additionally a negative association with particle MRT in the RR and a positive association with rumen motility. Thus, higher rumen levels of CH4 (CH4exhal or CH4RRf) were associated with shorter MRT and increased motility. These findings are tentatively interpreted as a feedback mechanism in the ruminant digestive tract that aims at mitigating CH4 losses by shortening MRT at higher CH4.

Statistics

Altmetrics

Downloads

2 downloads since deposited on 18 Aug 2016
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Department of Small Animals
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Language:English
Date:2016
Deposited On:18 Aug 2016 06:48
Last Modified:09 Oct 2016 06:02
Publisher:Cambridge University Press
ISSN:0007-1145
Funders:SNF
Publisher DOI:https://doi.org/10.1017/S0007114516002701
PubMed ID:27452637

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 365kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations