Header

UZH-Logo

Maintenance Infos

Accuracy of patient-specific template-guided vs. free-hand fluoroscopically controlled pedicle screw placement in the thoracic and lumbar spine: a randomized cadaveric study


Farshad, Mazda; Betz, Michael; Farshad-Amacker, Nadja A; Moser, Manuel (2017). Accuracy of patient-specific template-guided vs. free-hand fluoroscopically controlled pedicle screw placement in the thoracic and lumbar spine: a randomized cadaveric study. European Spine Journal, 26(3):738-749.

Abstract

PURPOSE Dorsal spinal instrumentation with pedicle screw constructs is considered the gold standard for numerous spinal pathologies. Screw misplacement is biomechanically disadvantageous and may create severe complications. The aim of this study was to assess the accuracy of patient-specific template-guided pedicle screw placement in the thoracic and lumbar spine compared to the free-hand technique with fluoroscopy. METHODS Patient-specific targeting guides were used for pedicle screw placement from Th2-L5 in three cadaveric specimens by three surgeons with different experience levels. Instrumentation for each side and level was randomized (template-guided vs. free-hand). Accuracy was assessed by computed tomography (CT), considering perforations of <2 mm as acceptable (safe zone). Time efficiency, radiation exposure and dependencies on surgical experience were compared between the two techniques. RESULTS 96 screws were inserted with an equal distribution of 48 screws (50 %) in each group. 58 % (n = 28) of template-guided (without fluoroscopy) vs. 44 % (n = 21) of free-hand screws (with fluoroscopy) were fully contained within the pedicle (p = 0.153). 97.9 % (n = 47) of template-guided vs. 81.3 % (n = 39) of free-hand screws were within the 2 mm safe zone (p = 0.008). The mean time for instrumentation per level was 01:14 ± 00:37 for the template-guided vs. 01:40 ± 00:59 min for the free-hand technique (p = 0.013), respectively. Increased radiation exposure was highly associated with lesser experience of the surgeon with the free-hand technique. CONCLUSIONS In a cadaver model, template-guided pedicle screw placement is faster considering intraoperative instrumentation time, has a higher accuracy particularly in the thoracic spine and creates less intraoperative radiation exposure compared to the free-hand technique.

Abstract

PURPOSE Dorsal spinal instrumentation with pedicle screw constructs is considered the gold standard for numerous spinal pathologies. Screw misplacement is biomechanically disadvantageous and may create severe complications. The aim of this study was to assess the accuracy of patient-specific template-guided pedicle screw placement in the thoracic and lumbar spine compared to the free-hand technique with fluoroscopy. METHODS Patient-specific targeting guides were used for pedicle screw placement from Th2-L5 in three cadaveric specimens by three surgeons with different experience levels. Instrumentation for each side and level was randomized (template-guided vs. free-hand). Accuracy was assessed by computed tomography (CT), considering perforations of <2 mm as acceptable (safe zone). Time efficiency, radiation exposure and dependencies on surgical experience were compared between the two techniques. RESULTS 96 screws were inserted with an equal distribution of 48 screws (50 %) in each group. 58 % (n = 28) of template-guided (without fluoroscopy) vs. 44 % (n = 21) of free-hand screws (with fluoroscopy) were fully contained within the pedicle (p = 0.153). 97.9 % (n = 47) of template-guided vs. 81.3 % (n = 39) of free-hand screws were within the 2 mm safe zone (p = 0.008). The mean time for instrumentation per level was 01:14 ± 00:37 for the template-guided vs. 01:40 ± 00:59 min for the free-hand technique (p = 0.013), respectively. Increased radiation exposure was highly associated with lesser experience of the surgeon with the free-hand technique. CONCLUSIONS In a cadaver model, template-guided pedicle screw placement is faster considering intraoperative instrumentation time, has a higher accuracy particularly in the thoracic spine and creates less intraoperative radiation exposure compared to the free-hand technique.

Statistics

Citations

2 citations in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 25 Aug 2016
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2017
Deposited On:25 Aug 2016 12:47
Last Modified:03 Mar 2017 02:00
Publisher:Springer
ISSN:0940-6719
Publisher DOI:https://doi.org/10.1007/s00586-016-4728-5
PubMed ID:27502497

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations