Header

UZH-Logo

Maintenance Infos

Discretization of Gene Expression Data Unmasks Molecular Subgroups Recurring in Different Human Cancer Types


Beleut, Manfred; Soeldner, Robert; Egorov, Mark; Guenther, Rolf; Dehler, Silvia; Morys-Wortmann, Corinna; Moch, Holger; Henco, Karsten; Schraml, Peter (2016). Discretization of Gene Expression Data Unmasks Molecular Subgroups Recurring in Different Human Cancer Types. PLoS ONE, 11(8):e0161514.

Abstract

Despite the individually different molecular alterations in tumors, the malignancy associated biological traits are strikingly similar. Results of a previous study using renal cell carcinoma (RCC) as a model pointed towards cancer-related features, which could be visualized as three groups by microarray based gene expression analysis. In this study, we used a mathematic model to verify the presence of these groups in RCC as well as in other cancer types. We developed an algorithm for gene-expression deviation profiling for analyzing gene expression data of a total of 8397 patients with 13 different cancer types and normal tissues. We revealed three common Cancer Transcriptomic Profiles (CTPs) which recurred in all investigated tumors. Additionally, CTPs remained robust regardless of the functions or numbers of genes analyzed. CTPs may represent common genetic fingerprints, which potentially reflect the closely related biological traits of human cancers.

Abstract

Despite the individually different molecular alterations in tumors, the malignancy associated biological traits are strikingly similar. Results of a previous study using renal cell carcinoma (RCC) as a model pointed towards cancer-related features, which could be visualized as three groups by microarray based gene expression analysis. In this study, we used a mathematic model to verify the presence of these groups in RCC as well as in other cancer types. We developed an algorithm for gene-expression deviation profiling for analyzing gene expression data of a total of 8397 patients with 13 different cancer types and normal tissues. We revealed three common Cancer Transcriptomic Profiles (CTPs) which recurred in all investigated tumors. Additionally, CTPs remained robust regardless of the functions or numbers of genes analyzed. CTPs may represent common genetic fingerprints, which potentially reflect the closely related biological traits of human cancers.

Statistics

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

14 downloads since deposited on 25 Aug 2016
10 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Pathology and Molecular Pathology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2016
Deposited On:25 Aug 2016 05:54
Last Modified:05 Aug 2017 18:43
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0161514
PubMed ID:27537329

Download

Download PDF  'Discretization of Gene Expression Data Unmasks Molecular Subgroups Recurring in Different Human Cancer Types'.
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)