Header

UZH-Logo

Maintenance Infos

TinyIPFIX: An efficient application protocol for data exchange in cyber physical systems (printed version)


Schmitt, Corinna; Kothmayr, Thomas; Ertl, Benjamin; Hu, Wen; Braun, Lothar; Carle, Georg (2016). TinyIPFIX: An efficient application protocol for data exchange in cyber physical systems (printed version). Computer Communications, 74(2016):63-76.

Abstract

Wireless sensor networks (WSNs) as a central part of cyber-physical systems are gaining commercial momentum in many areas, including building monitoring and intelligent home automation. Users wish to successively deploy hardware from different vendors. Interoperability is taken for granted by the customers who want to avoid the need for exhaustive configuration and set-up. Therefore, the need for an interoperable and efficient application layer protocol for machine-to-machine communication in and across the boundaries of WSNs arises. We address these issues with our implementation of TinyIPFIX, an adaption of the IP Flow Information Export (IPFIX) protocol. Throughout the paper we show how to leverage TinyIPFIX in the context of an office scenario and we discuss how the protocol may be applied to other significant WSN deployments presented in literature over the past few years. This article additionally shows how to improve the functionality of TinyIPFIX by adding both syntactic and semantic aggregation functionality to the established system. Finally, we evaluate the performance of TinyIPFIX in a large test bed with over 40 motes running TinyOS and analyze TinyIPFIX’s system performance in comparison with previous approaches.

Abstract

Wireless sensor networks (WSNs) as a central part of cyber-physical systems are gaining commercial momentum in many areas, including building monitoring and intelligent home automation. Users wish to successively deploy hardware from different vendors. Interoperability is taken for granted by the customers who want to avoid the need for exhaustive configuration and set-up. Therefore, the need for an interoperable and efficient application layer protocol for machine-to-machine communication in and across the boundaries of WSNs arises. We address these issues with our implementation of TinyIPFIX, an adaption of the IP Flow Information Export (IPFIX) protocol. Throughout the paper we show how to leverage TinyIPFIX in the context of an office scenario and we discuss how the protocol may be applied to other significant WSN deployments presented in literature over the past few years. This article additionally shows how to improve the functionality of TinyIPFIX by adding both syntactic and semantic aggregation functionality to the established system. Finally, we evaluate the performance of TinyIPFIX in a large test bed with over 40 motes running TinyOS and analyze TinyIPFIX’s system performance in comparison with previous approaches.

Statistics

Citations

2 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
Dewey Decimal Classification:000 Computer science, knowledge & systems
Language:English
Date:16 January 2016
Deposited On:01 Sep 2016 08:26
Last Modified:02 Sep 2016 03:08
Publisher:Elsevier
ISSN:0140-3664
Publisher DOI:https://doi.org/10.1016/j.comcom.2014.05.012
Other Identification Number:merlin-id:13694

Download

Full text not available from this repository.
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations