Header

UZH-Logo

Maintenance Infos

Anti-MMP-9 Antibody: A promising therapeutic strategy for treatment of inflammatory bowel disease complications with fibrosis


Goffin, Laurence; Fagagnini, Stefania; Vicari, Alain; Mamie, Céline; Melhem, Hassan; Weder, Bruce; Lutz, Christian; Lang, Silvia; Scharl, Michael; Rogler, Gerhard; Chvatchko, Yolande; Hausmann, Martin (2016). Anti-MMP-9 Antibody: A promising therapeutic strategy for treatment of inflammatory bowel disease complications with fibrosis. Inflammatory Bowel Diseases, 22(9):2041-2057.

Abstract

BACKGROUND Despite medical treatments or surgical options, more than one-third of patients with Crohn's disease suffer from recurring fistulae. Matrix metalloprotease 9 (MMP-9), a type IV collagenase that cleaves components of the extracellular matrix leading to tissue remodeling, is upregulated in crypt abscesses and around fistulae suggesting an important role for this enzyme in fistula formation. Our aims were (1) to correlate serum levels of MMP-9 degradation products in patients with CD with the presence of fistulae and (2) to investigate the impact of selective MMP-9 inhibition in a mouse model of intestinal fibrosis. METHODS Serum MMP-9 degradation products were quantified in subjects affected with nonstricturing and nonpenetrating CD (n = 50), stricturing CD (n = 41), penetrating CD (n = 22), CD with perianal fistula (n = 29), and healthy controls (n = 10). Therapeutic efficacy of anti-MMP-9 monoclonal antibodies was assessed in a heterotopic xenograft model of intestinal fibrosis. RESULTS C3M, an MMP-9 degradation product of collagen III, demonstrated the highest serum levels in patients with penetrating CD and differentiated penetrating CD from other CD subgroups and healthy controls, P = 0.0005. Anti-MMP-9 treatments reduced collagen deposition and hydroxyproline content in day-14 intestinal grafts indicating reduced fibrosis. CONCLUSIONS The serologic biomarker C3M can discriminate penetrating CD from other CD subgroups and could serve as marker for the development of penetrating CD. Anti-MMP-9 antibody has therapeutic potential to prevent intestinal fibrosis in CD complications.

Abstract

BACKGROUND Despite medical treatments or surgical options, more than one-third of patients with Crohn's disease suffer from recurring fistulae. Matrix metalloprotease 9 (MMP-9), a type IV collagenase that cleaves components of the extracellular matrix leading to tissue remodeling, is upregulated in crypt abscesses and around fistulae suggesting an important role for this enzyme in fistula formation. Our aims were (1) to correlate serum levels of MMP-9 degradation products in patients with CD with the presence of fistulae and (2) to investigate the impact of selective MMP-9 inhibition in a mouse model of intestinal fibrosis. METHODS Serum MMP-9 degradation products were quantified in subjects affected with nonstricturing and nonpenetrating CD (n = 50), stricturing CD (n = 41), penetrating CD (n = 22), CD with perianal fistula (n = 29), and healthy controls (n = 10). Therapeutic efficacy of anti-MMP-9 monoclonal antibodies was assessed in a heterotopic xenograft model of intestinal fibrosis. RESULTS C3M, an MMP-9 degradation product of collagen III, demonstrated the highest serum levels in patients with penetrating CD and differentiated penetrating CD from other CD subgroups and healthy controls, P = 0.0005. Anti-MMP-9 treatments reduced collagen deposition and hydroxyproline content in day-14 intestinal grafts indicating reduced fibrosis. CONCLUSIONS The serologic biomarker C3M can discriminate penetrating CD from other CD subgroups and could serve as marker for the development of penetrating CD. Anti-MMP-9 antibody has therapeutic potential to prevent intestinal fibrosis in CD complications.

Statistics

Citations

8 citations in Web of Science®
6 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

7 downloads since deposited on 01 Sep 2016
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Gastroenterology and Hepatology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:September 2016
Deposited On:01 Sep 2016 08:34
Last Modified:08 Dec 2017 20:18
Publisher:Lippincott Williams & Wilkins
ISSN:1078-0998
Publisher DOI:https://doi.org/10.1097/MIB.0000000000000863
PubMed ID:27542125

Download