Linking individual-level functional traits to tree growth in a subtropical forest

Liu, Xiaojuan; Swenson, Nathan G; Lin, Dunmei; Mi, Xiangcheng; Umaña, María Natalia; Schmid, Bernhard; Ma, Keping

Abstract: Forging strong links between traits and performance is essential for understanding and predicting community assembly and dynamics. Functional trait analyses of trees that have correlated single-trait values with measures of performance such as growth and mortality have generally found weak relationships. A reason for these weak relationships is the failure to use individual-level trait data while simultaneously putting that data into the context of the abiotic setting, neighborhood composition, and the remaining axes constituting the overall phenotype. Here, utilizing detailed growth and trait data for 59 species of trees in a subtropical forest, we demonstrate that the individual-level functional trait values are strongly related to individual growth rates, and that the strength of these relationships critically depends on the context of that individual. We argue that our understanding of trait–performance relationships can be greatly improved with individual-level data so long as that data is put into the proper context.

DOI: https://doi.org/10.1002/ecy.1445

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-126033
Accepted Version

Originally published at:
Liu, Xiaojuan; Swenson, Nathan G; Lin, Dunmei; Mi, Xiangcheng; Umaña, María Natalia; Schmid, Bernhard; Ma, Keping (2016). Linking individual-level functional traits to tree growth in a subtropical forest. Ecology, 97(9):2396-2405.
DOI: https://doi.org/10.1002/ecy.1445
Running Title: Individual level trait-performance linkages

Linking individual-level functional traits to tree growth in a subtropical forest

Xiaojuan Liu¹,², Nathan G. Swenson³, Dunmei Lin⁴, Xiangcheng Mi¹, María Natalia Umaña³,
Bernhard Schmid² and Keping Ma¹ *

¹ State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the
Chinese Academy of Sciences, Beijing, China; liuxiaojuan06@ibcas.ac.cn;
mixiangcheng@ibcas.ac.cn; kpma@ibcas.ac.cn.

² Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich,
Switzerland; liuxiaojuan06@ibcas.ac.cn; bernhard.schmid@ieu.uzh.ch

³ Department of Biology, University of Maryland, College Park, Maryland 20742, U.S.A.;
swenson@umd.edu; maumana@umd.edu

⁴ Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of
Education, Chongqing University, Chongqing, China; lindunmei@cqu.edu.cn

Corresponding Author:
Keping Ma
State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The
Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China.
Tel: 86-10-62836223
Fax: 86-10- 82599518
Email: kpma@ibcas.ac.cn.

Submitted as an: “Article”
Abstract

Forging strong links between traits and performance is essential for understanding and predicting community assembly and dynamics. Functional trait analyses of trees that have correlated single trait values with measures of performance such as growth and mortality have generally found weak relationships. A reason for these weak relationships is the failure to use individual-level trait data while simultaneously putting that data into the context of the abiotic setting, neighborhood composition and the remaining axes constituting the overall phenotype. Here, utilizing detailed growth and trait data for 59 species of trees in a subtropical forest, we demonstrate that the individual-level functional trait values are strongly related to individual growth rates, and that the strength of these relationships critically depends on the context of that individual. We argue that our understanding of trait–performance relationships can be greatly improved with individual-level data so long as that data is put into the proper context.

Key words: growth rate; functional traits; soil nutrients; neighborhood; warm season; cold season; long-term; short-term
INTRODUCTION

The assembly and dynamics of ecological communities is ultimately governed by demographic performance (Rees et al. 2001, Silvertown 2004). A key goal in community ecology is, therefore, to quantify the intrinsic and extrinsic factors that best predict individual performance. Identifying the relative influence of the abiotic and biotic environment and the aspects of organismal form and function that are related to such interactions is necessary for a predictive and mechanistic understanding of how individual performance scales up to produce the emergent patterns of community assembly and dynamics (e.g. Massey et al. 2006, Enquist et al. 2007, Martinez-Vilalta et al. 2010, Bai et al. 2012, Swenson 2013, Iida et al. 2014a,b).

Despite the importance of linking organismal traits to the abiotic and biotic environment and individual-level demographic performance, most trait-based analyses of tree demography have uncovered relatively weak statistical relationships (Poorter et al. 2008, Herault et al. 2011, Sterck et al. 2012). We propose four reasons why these relationships are not as strong as originally expected. First, trait–demography relationships must be placed into the context of the present abiotic and biotic environment. Specifically, the performance of an individual given its trait values can only be predicted with information regarding the identity of the neighboring individuals with which it interacts and the abiotic environment (e.g. Milla et al. 2009, Auger and Shipley 2013). Further, it is well known that soil nutrient and water content can greatly influence individual tree growth (e.g. Vitousek et al. 1993, Baker et al. 2003, Paoli and Curran 2007), but this information is frequently not considered in functional trait-tree demography research. Second, in seasonal environments, the factors that most affect demography are likely to change with the seasons and such detail is often not considered. Third, often only univariate trait–demography relationships have been explored, but it is more likely that the entire multivariate phenotype and not only a single trait determine individual

Lastly, trait–demography statistical relationships are often quantified at the species level using mean demographic rates and mean trait values, but individuals within species may vary substantially in their traits and performance, due to genetic and environmental differences, suggesting that trait–demography relationships will be strongest when analyzing data on the individual and not the species level (von Oheimb et al. 2011, Auger and Shipley 2013, Iida et al. 2014a,b). Individual-based studies are therefore needed to understand how functional traits and the abiotic and biotic environment simultaneously govern demographic performance.

Critical to plant trait-demography research is that the traits being integrated should be those closely related with the ability to acquire limiting resources, thereby dictating competition, growth or tolerance to abiotic and biotic interactions. This includes traits related to structure, wood economics and leaf economics and where species land on a fast (i.e. acquisitive) to slow (conservative) strategy spectrum (e.g. Wright et al. 2004; Enquist et al. 2007, Chave et al. 2009). Typically, ecologists have used easily measured traits for these purposes, but it is likely that allocation and relative "hard" traits, such as crown dimensions and hydraulics, are more strongly linked with performance and better reflect where species fall along an acquisitive to conservative strategy (Chave et al. 2009, Russo et al. 2010, Westbrook et al. 2011, Fan et al. 2012). For example, trees with large crown diameters are expected to have faster growth rates as height and crown size are closely related with canopy light interception and overall allocation to resource capture (Poorter et al. 2005, King et al. 2006). Additionally, individuals with higher hydraulic conductivity generally have lower wood density and have faster volumetric growth rates (Fan et al. 2012, Iida et al. 2014a, b). In other words, allocation and hard trait data may be extremely valuable and informative for trait-demography research, but there is a tremendous risk in losing this value when aggregating the data up to the species level. More research is needed that measures those
aspects of plant form and function that are more mechanistically linked to individual performance and more information is needed regarding whether individual level analyses are indeed more informative than analyses using aggregated species level data.

Large (i.e. > 1 ha) long-term forest dynamics plots with regular inventories of tree growth provide the essential infrastructure necessary to link the demographic performance of individuals to their abiotic and biotic environment and traits in a robust manner. Here we use a long-term forest dynamics plot in subtropical China to explore the causal relationships between functional traits, abiotic environment and neighborhood composition of individual trees on the explanatory side and the growth of these individuals as the dependent variable for 59 woody species. We predict that 1) functional traits measured at individual level are directly related to tree growth; 2) the functional trait values of individuals are the result of intrinsic and extrinsic factors linked to abiotic and biotic environments, making these environmental variables indirectly linked to growth via the traits measured; 3) the importance of trait, abiotic and biotic factors to tree growth is sensitive to intra- and inter-annual variation in climate and the relative strength of these interactions will not be consistent across seasons or years; 4) abiotic variables should be directly related to neighborhood composition which itself influences the trait values of individuals; and 5) traits measured on the individual level will explain more of the variation in individual growth rates than mean trait values calculated from the aggregation of individual-level (i.e. species level mean trait data). Here we present, to our knowledge, the first study to address these predictions by measuring traits, the environment and growth at the individual level in a natural forest stand.

METHODS

Study site
The study was conducted in the 24-ha Gutianshan forest dynamics plot (GTS FDP) in evergreen broad-leaved old-growth subtropical forest at the Gutianshan Nature Reserve, Kaihua, China (29°15’ N, 118°07’ E). The GTS FDP is a part of the Chinese Forest Biodiversity Monitoring Network and the Smithsonian's Center for Tropical Forest Science Network. All free-standing woody trees with a diameter at breast height (DBH) bigger than or equal to 1 cm were mapped, tagged and identified to species (Legendre et al. 2009). In the present study we used data from the 2005 and 2010 censuses. GTS FDP has distinct seasons with a relatively warm and wet season from April to September and a cold and dry season from October to March. The average annual rainfall is 1964 mm and the mean annual temperature is 15.3°C (Yu 2011). The plot is topographically rugged with altitude ranging from 446 to 715 m.

Target trees and growth rates

To quantify tree growth on finer temporal scales we installed dendrometer bands on over 1300 individual trees within the GTS FDP representing 80 species. The dendrometers allowed us to quantify variation in growth on shorter time scales than is typical for other studies of tree growth in large forest dynamics plots (Yan et al. 2006, O'Brien et al. 2008). The trees with dendrometer bands were sampled according to a standard protocol where 50 randomly selected quadrats were selected across the 24 ha GTS FDP, each being 40×40 m in area with a central nesting of subplots 15×15 m, 12×12 m and 8×8 m in size (Muller-Landau 2008). Quadrats and sub-quadrats of different sizes were used for sampling trees with DBH 40–50 cm, 20–40 cm, 10–20 cm and 5–10 cm, respectively, on which dendrometers were placed. Additionally, trees with a DBH bigger than 50 cm were randomly selected from all over the 24 ha plot. Trees that died during the study period, trees with damaged dendrometer bands, species with a single individual in the dataset, and species with incomplete trait or
growth data at the individual level were eliminated from the analyses. This resulted in a
reduced dataset containing 882 individual trees belonging to 59 species. DBH values ranged
from 3.1 cm to 87.4 cm in this reduced dataset (Table S1 and Fig. 1).

Each tree with a dendrometer was visited twice per year, in March and September, and
the growth increment was measured using a digital caliper. These circumference increments
were transformed into diameter increments divided by the time interval to produce an annual
tree growth rate, assuming linear growth over the time interval (mm/yr). All of the
dendrometers were installed in September 2009. The measurements used in this study were
obtained in the time period between September 2010 and September 2013. This included 7
measurements times or 6 time intervals per tree. However, the first measurement was
excluded because the spring keeping the dendrometer band tight had slipped in some trees
and needed time to settle, making initial measurements unreliable. According to the
temperature of the region, we defined April to September as the warm season and October to
March as the cold season. We calculated growth rate as the average annual growth rate
summarized across seasons (mm/yr, AGR-2), the average annual growth rate just during the
warm season (mm/yr, AGR-W) and the average annual growth rate just during the cold
season (mm/yr, AGR-C) (Fig. S1). We also wanted to compare these dendrometer growth
data to the growth data taken during the normal 5-year interval censuses (i.e. the growth from
2005 to 2010 for the same individuals). Thus we calculated the average annual growth rate
for all 882 individuals (mm/yr, AGR-5) and included these measurements in our analysis (Fig.
S1). For biological and statistical reasons (see Stoll et al. 1994), we analyzed absolute rather
than relative growth rates.

Tree functional traits
We measured functional trait values for each of the 882 trees in our reduced dataset. These data were used for all of our individual-level analyses. For the species mean trait values we used the combined individual data for the 882 trees with additional data points from our previous work in the same forest plot where more individuals were sampled (Liu et al. 2012). For each of the 882 target trees, we measured two architectural traits, height and crown diameter (CD), two stem traits, wood density (WD) and xylem specific hydraulic conductivity (Ks) and five leaf traits, leaf area (LA), specific leaf area (SLA), stomatal density (SD), leaf nitrogen content (LN) and leaf phosphorus content (LP). These functional traits are thought to be leading indicators of plant functional strategies and are expected to be linked to individual tree performance (e.g. Westoby et al. 2002, Wright et al. 2004, Poorter et al. 2008, Chave et al. 2009, Wright et al. 2010). Height and CD were measured using an altimeter pole together with a laser telemeter (Nikon Laser rangefinder 550, Japan) and a compass (Harbin Compass DQL-9, China). Individual WD was quantified using the density of the nearest branch attached to the main trunk. Previous work has shown this to be a strong predictor of the main stem WD (Swenson and Enquist 2008). Thus, measuring branch WD allowed researchers to estimate individual WD without having to conduct potentially very destructive measurements such as coring the main stem or radially sectioning a stem (Swenson and Enquist 2008). The branch WD was calculated as oven-dried mass (80°C, 48 hours) divided by water-displaced volume of 3–5 segments cutting from three separate branches for each tree. Bark thickness was measured directly by electronic caliper. The Ks of each tree was calculated as the maximum rate of water flow through a branch segment per xylem cross-sectional area. The water flow rate was measured by a set of self-made equipment amenable to work in a field laboratory. We used 3–5 uniform, straight, healthy and sun exposed branches with diameters ca. 0.45 mm and with lengths ca. 15 cm for each individual tree (Sperry et al. 1988, Ding J. 2011). The LA and SLA measurements followed
the same methodologies as used in Liu et al. (2012) where 5–10 fresh, healthy and intact leaves were sampled for each tree, scanned for area and dried 48 hours at 60°C to measure mass. Leaf stomatal density was determined as the number of stomata per unit area using lamina impressions (Sachs and Novoplansky 1993, Ding 2011). The sampled leaves were fresh and healthy leaves without any dirt or damage to the lower epidermis. Three impressions from each leaf were taken back to the lab and the number of stomata was counted under a microscope (Nikon 80i, Japan). LN and LP were determined using Kjeldahl method (Kjeltec 2200, FOSS, Sweden) and Mo-Sb colorimetric method (UV-2550 Spectrophotometer, Shimadzu, Japan) separately in the lab.

Environmental factors

Four topographic factors (elevation, convexity, slope and aspect) and eleven soil nutrients (N, Fe, Mn, Zn, Cu, K, P, Ca, Mg, B, Al) and soil pH were used in our study. Briefly, elevation was quantified at every 20 m stake in the GTS FDP and using this data convexity, slope and aspect of each 20 x 20 m subplot was determined. These data were then used to assign values to each of the target trees. Soil nutrients were similarly quantified with the exception of soil cores being taken every 50 m in a large grid with three additional samples taken around these points in random distances and directions. These data were then used with kriging to provide soil nutrient maps for the plot. A more detailed description for the measurement of these factors can be found in Legendre et al. (2009) and Zhang et al (2011).

Neighborhood composition

The composition of the neighborhood, specifically the identity, number, size of and distance to neighboring trees, are expected to be related to target tree performance. For example, a high density of conspecific neighbors should negatively influence performance via
competition for shared resources or shared pests. Therefore, we quantified conspecific and
heterospecific total basal area and abundance for neighboring trees for each target individual
within 10 m to characterize the biotic environment of individual trees. As neighborhood
competition is often considered to be asymmetric, here we only analyzed the larger
neighboring individuals (neighbors with DBH larger than the focal tree). These variables
were called: conspecific basal area (BA-c), heterospecific basal area (BA-h), conspecific
abundance (AB-c) and heterospecific abundance (AB-h).

Statistics

Pearson correlation analysis for growth rates: We calculated Pearson correlations to test the
c Pairwise relationships between AGR-5, AGR-2, AGR-W, and AGR- C and to evaluate the
seasonal variation of tree growth and variation in long- and short-term growth (Fig. 2). All
variables were log-transformed or squared-root transformed in order to normalize them prior
to analysis. The goal of this approach was to determine how well measurements from
censuses separated by longer periods of time were correlated with more frequent measures
and whether species growth between seasons in a year was correlated.

Structural equation model relating individual level growth and traits at individual/species-
level and growth to the abiotic and biotic environment: One of our motivations for this study
was to explore the causal relationship among abiotic environmental factors, neighborhood
composition, functional traits and growth rates. To this end, we used structural equation
models (SEMs) to estimate the path coefficients and variation of dependent variables. We
hypothesized that abiotic environmental factors and neighborhood composition first jointly
affect the functional trait values of a target individual tree and functional traits will directly
and ultimately affect tree growth rate. In other words, we expected that abiotic and biotic
environment affect tree growth indirectly via their effect on plant traits. Nevertheless, we also
tested direct environmental effects on growth rates by including direct pathways in the SEMs.
Alternative pathways investigated included the direct effect of abiotic environmental factors
on neighborhood composition and plant traits. We assumed that functional traits,
environmental factors and neighborhood composition were latent variables in the SEMs, each
related to the real measured variables. Additionally, we wanted to test whether individual-
level traits are better predictors of tree growth than species-level traits. To address this, we
made another SEM where all other variables were the same as in the individual-level traits
SEM, but trait values were substituted with species-level mean traits values. Then we could
compare the predictive power between these two SEMs. The model was fit using maximum
likelihood as implemented in the R package “lavaan” (Rosseel 2012).

Linear regression model relating functional traits to growth rates: A final goal of our study
was to explore whether the growth rate of an individual was more strongly predicted by the
traits measured on that individual rather than the mean trait value for that species without any
contextual information (i.e. knowledge of values for other traits on the individual or the
abiotic and biotic environment). Trait values at species level were calculated as the mean
value of all individual trees with dendrometer for each species. Four functional traits (height,
SLA, Ks and SD) were selected according to our results in SEMs. Linear regression models
were used to evaluate growth–trait relationships using trait values at both individual and
species levels. All analyses were conducted using R statistical software (R Development Core
Team 2008).

RESULTS

Relationship between different growth rates
The annual growth rate calculated from a two-year census interval using dendrometers (AGR-2) was significantly related to the annual growth rate calculated from a five-year census interval using diameter tapes (AGR-5) and the annual growth rate measured using dendrometers in the warm (AGR-W) and cold (AGR-C) seasons for individual trees (Fig. 2). There was a particularly strong positive relationship between AGR-2 and AGR-W ($r = 0.97$, $p < 0.001$) and a weaker one between AGR-2 and AGR-C ($r = 0.82$, $p < 0.001$). AGR-W and AGR-C were also significantly correlated ($r = 0.71$, $p < 0.001$), with AGR-W $>$ AGR-C (Fig. 2). The positive but not very strong relationship between AGR-5 and AGR-2 ($r = 0.63$, $p < 0.001$) showed that the long-term measurements based on diameter tapes and more frequent measurements using dendrometers were significantly correlated, but with substantial variation left unexplained (Fig. 2). The absolute growth rate varied considerably among individuals within species and among different species (Fig. S1).

Relationship between growth rates, functional traits, environmental factors and neighborhood competition effects

Results from the individual-level trait SEM showed that the strongest statistical relationships in the four best structural equation models (SEMs), one for each type of annual growth rate, was between functional trait and growth rates. The SEMs all supported strong positive direct relationships between functional trait and growth rates, with coefficients much larger than direct effects from environmental factors and neighborhood competition (Fig. 3). The functional traits that were cumulatively positively related to the traits latent variable, that were predictive of AGR-5, AGR-2, AGR-W and AGR-C were tree height, SLA, K_s and S_D. The other traits were not included in our most strongly supported SEMs. The environment latent variable had a significant but weaker direct relationship with all types of annual growth rates and also directly and negatively related with the neighborhood composition (Fig. 3).
The environmental factors that were selected for inclusion in the environment latent variable included six soil nutrients (Ca, Zn, K, Mn, Cu, Mg) and pH. None of the topographic factors were selected for inclusion in the model. The neighborhood competition variable, represented by conspecific basal area of neighbor trees, had a marginal significant (p<0.1, Fig. 3b, c) or non-significant (Fig. 3a, d) negative and direct effect on the annual growth rates in each SEM model, while its effect on the functional trait latent variable was much stronger and positive in all models (Fig. 3). Overall, the coefficients and relationships in the SEMs were very similar for AGR-5, AGR-2, AGR-W and AGR-C (Fig. 3). In sum, functional traits together with neighborhood composition and environmental factors explained up to 86% of the variation in growth rates, while environmental factors and neighborhood composition explained up to 69% of the variation in functional trait (Fig. 3d).

The SEMs using the species-level trait data showed that the variation of growth rates explained by traits together with neighborhood composition and environmental factor were much less than that in the individual-level SEMs (species-level up to 45%, Fig. S2). In addition, the direct effects from neighborhood composition and environment factor to functional traits were also weaker in all four species-level SEMs than that in the individual-level SEMs (Fig. S2).

Trait effects on growth rates at different levels

The results from the linear regression models showed that tree height was the trait with the strongest relationship with growth rates (Fig. 4, Fig. S3 and Table S2). The significant relationships between height and growth rates were stronger for species-level data ($0.07 < R^2 < 0.21$) and weaker for the individual-level data ($0.03 < R^2 < 0.14$). Both specific leaf area and stomatal density were only significantly related to AGR-2 and AGR-C with slightly stronger relationships detected at the species level ($0.03 < R^2 < 0.05$ for SLA and $0.005 < R^2$...
< 0.03 for SD). Although the correlations between stomatal density and AGR-2 was significant, it was quite weak ($R^2 < 0.005$; Fig. S3 and Table S2). Specific hydraulic conductivity was significantly but very weakly correlated with AGR-5 and AGR-2 at species level ($R^2 = 0.004$ and 0.005), but not at the individual level, while it was significantly correlated with AGR-C at both levels (Fig. S3 and Table S2).

DISCUSSION

A critical goal for functionally-based ecology and evolution is to link individual performance to organismal function. Trait-based predictions of tree growth have often resulted in relatively little variation explained (e.g. Poorter et al. 2008, Wright et al. 2010). However, this work generally has failed to relate the growth of an individual to traits measured on that same individual while simultaneously considering the abiotic and biotic context in which that individual was found. In this study, we modeled the growth rate for 882 individual trees in a subtropical forest belonging to 59 species by combining data regarding functional traits, environmental factors and neighborhood composition based at the individual level. We found that functional traits were the strongest direct predictors of tree growth rates, while environmental factors and neighborhood composition directly affected growth to a lesser degree or indirectly affected growth through their direct interaction with traits. Additionally, the inconsistent results from SEMs and linear regression between species-level and individual-level traits showed that functional traits measured at the individual level are stronger predictors of individual tree growth than species level mean values when considering the phenotypic and environmental contexts. In the following sub-sections we discuss the results in detail.
Trait-growth relationships at the individual level with phenotypic and environmental context

The statistical relationships from the structural equation modeling (SEM) between growth rates, functional traits, environmental factors and neighborhood composition were statistically similar between AGR-2 and AGR-W (Fig. 3b, c), which strongly suggests that the average annual growth of subtropical trees was largely determined by its performance in the warm season. This is confirmed by the high correlation coefficient between AGR-2 and AGR-W (Fig. 2). The SEMs for these two growth rates showed that functional traits predict tree growth in a direct way. Here the functional trait latent variable was a combination of height, specific leaf area (SLA), xylem specific hydraulic conductivity (Ks) and stomatal density (SD), where each was positively related to the functional trait latent variable and therefore growth. Height was the trait most strongly correlated with the functional trait latent variable. The importance of this trait is consistent with previous studies from tropical and temperate forests. In the tropics, for example, Poorter et al. (2008) has shown that tree growth rate is higher in trees with greater maximum tree height in five Neotropical forests and Herault et al. (2011) has shown that growth increases rapidly with tree height in a lowland Neotropical forest. In the temperate zone, juvenile growth in New Zealand forests and adult tree growth in Spanish forests have been linked to the maximum height of species (Martinez-Vilalta et al. 2010, Russo et al. 2010). The biological explanation proposed to underlie these relationships is that taller trees are more able to access light in a closed-canopy forest (Poorter et al. 2006). Along with height, SLA, Ks and SD were positively related to the functional traits latent variable and therefore growth (Fig. 3). Large values of SLA are related to species with high mass-based photosynthetic rates, high values of Ks indicate the ability to rapidly move water to the site of photosynthesis and high SD values indicate the ability of the plant to rapidly take up CO₂ for fixation. Thus, high values of all three of these traits are...
representative of an individual with an acquisitive resource-use strategy that should be
mechanistically linked to faster growth rates and our results support this prediction.

The SEMs also showed that the environmental factors not only directly and positively
affect tree performance, but also largely influenced the neighborhood composition around a
target individual and that composition interacted with the latent trait variable to influence
growth, though both effects were generally weak (Fig. 3). Here the environment soil latent
variable included several soil cations and pH indicating that more fertile soils tend to favor
tree growth. An increased concentration and availability of soil macronutrients being
correlated to faster growth is not terribly surprising. Studies from both, natural ecosystems
and manipulative experiments, have shown that macronutrients are critical to plant health and
overall tree performance (Andersen et al. 2010, Wright et al. 2011, Baribault et al. 2012). For
example, potassium addition tends to increase growth rates, as potassium is a limiting
nutrient in several physiological activities (e.g. phloem transport and photosynthesis) (Tripler
et al. 2006) and calcium shows a positive relationship with tree growth, as calcium plays an
import role in the physiological processes related with stability and structural integrity of
biological tissues (e.g. membrane structure and stomatal function) (McLaughlin and
Wimmer 1999). These taken together demonstrate a clear mechanistic positive linkage
between favorable soil nutrient conditions, acquisitive resource-use strategies and ultimately
faster growth on the individual level.

However, the effect of environmental factors on growth rates was also partly
indirectly explained via a neighborhood composition effect. The neighborhood composition,
represented by conspecific basal area, showed a marginal significant negative (p<0.1) and
direct effect on AGR-2 and AGR-W (Fig. 3b, c). In other words, the growth rate of target
trees decreased as the size of surrounding conspecific trees increased, but this trend was on
the boundary of statistical significance. On the other hand, conspecific basal area showed
strong and positive effect on trait latent variable, while traits also showed positive and strong
effect on growth rates. Combined, both results indicate that the negative competitive effect
among neighbor species/trees, as they have high similarity in resource requirement, is
moderated by the competitive strategies of plant functional traits, which will finally reflected
on plant performance (Uriarte et al. 2010).

The SEMs for AGR-5 representing long-term growth and AGR-2 representing short-
term growth differed in several ways (Fig.3a, b). First, although the functional trait latent
variable had a direct and positive effect on growth rate in the AGR-5 SEM as well as in the
AGR-2 SEM, it tended to be much stronger for the AGR-2 SEM. Second, the effect of the
neighborhood competition latent variable to tree growth rates was not significant in AGR-5
SEM. Third, AGR-2 SEM explained much more variation in growth rates than AGR-5 SEM
(72% vs 12%). This indicates short-term growth rates are largely governed by plant traits,
while this effect will be moderated by other undetected variables in the longer term. Besides,
it also showed the dendrometers are providing more refined information for tree performance.

It would be more reliable to use the dendrometer data.

Trait-growth models using individual versus species level trait data

Next we generated a new series of SEMs that were identical aside from using species level
mean trait values instead of the individual level trait data. The results show that the SEMs
using species level trait data modeled growth worse than those original models that used
individual level data. These results highlight the value of using individual level data and
support recent work stating that the aggregation of individual level data results in an
important loss of information and it should be avoided if at all possible (e.g. Clark et al.
2011).
The SEMs we constructed utilized data for multiple traits (i.e. the phenotypic context) and soil and neighborhood compositions (i.e. the abiotic and biotic environmental context). In these models individual level trait data outperformed species level data. We also wanted to quantify whether single individual level traits were better predictors of growth than species level traits without this contextual information. To this end, we conducted linear regressions analyses using single traits. The results showed that height was the single best predictor of growth (Fig. 4 and Table S2). The individual specific leaf area and stomatal density values explained slightly more variation in growth than averaged traits in a couple of instances, but the variation explained was very small (Table S2). Specific hydraulic conductivity was not significantly related with three of four growth rates at individual level, only weekly correlated with growth rates at species level. Thus, the information and predictive ability gained by measuring individual level trait data in our study system is only strongly realized when simultaneously taking into consideration the phenotypic and environmental context. The phenotypic context itself of an individual trait, in particular, is frequently ignored in trait-growth studies and this ignorance is problematic. Specifically, important traits are not perfectly coordinated and there is freedom to vary and explore different regions of multivariate trait space within species (e.g. Marks and Lechowicz 2006) such that an increase in one trait that might influence growth may not be related at all to the change in another key trait related to growth and without knowing how both change from one individual to the next we may never strongly model their growth upon the basis of functional traits. Thus, future work that considers multivariate phenotypes and how individual axes vary across individuals within species is greatly needed.

CONCLUSIONS
A key goal in functional and community ecology is to successfully link organismal traits to performance. Previous work in tree assemblages that has correlated average functional trait values with average growth rates has reported weak statistical relationships. It is typically argued that individual-level trait data and information about the abiotic and biotic environment of each individual are needed to generate stronger predictions, but this has not been tested. Here we have shown that individual-level functional traits strongly predict individual tree growth in a subtropical forest. However, the strength of these predictions is facilitated by using information regarding the soil environment, identity of neighboring individuals and other trait values for the same individual. Without this contextual information, single trait values taken from an individual are often no better predictors of individual growth than an average trait value for the population or species. Given these results, we argue that individual level trait information greatly refines our understanding of how traits link to performance, but it is essential that such investigations consider the context in which the individual is found otherwise the potential value of individual level trait data will not be realized.

ACKNOWLEDGEMENTS

We thank all the student helpers and local farmers to collect tree inventory and plot census data. We also appreciate the local support from the administration Bureau of the Gutianshan National Nature Reserve. This study was financially supported by the National Natural Science Foundation of China (No. 31300353). NGS was supported by two National Science Foundation US-China Dimensions of Biodiversity grants (DEB-1241136; DEB-1046113).

LITERATURE CITED

summer drought and seasonal grazing in Mediterranean herbaceous communities.

Swenson, N. G. 2012. The Functional Ecology and Diversity of Tropical Tree Assemblages through Space and Time: From Local to Regional and from Traits to Transcriptomes. ISRN Forestry 2012:16.

Hardtle. 2011. Individual-tree radial growth in a subtropical broad-leaved forest: The role
strategies: Some leading dimensions of variation between species. Annual Review of
Ecology and Systematics 33:125-159.
2011. What Makes a Leaf Tough? Patterns of Correlated Evolution between Leaf
Toughness Traits and Demographic Rates among 197 Shade-Tolerant Woody Species in a
Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-
Wright, S. J., K. Kitajima, N. J. B. Kraft, P. B. Reich, I. J. Wright, D. E. Bunker, R. Condit, J.
W. Dalling, S. J. Davies, S. Diaz, B. M. J. Engelbrecht, K. E. Harms, S. P. Hubbell, C. O.
Marks, M. C. Ruiz-Jaen, C. M. Salvador, and A. E. Zanne. 2010. Functional traits and the
Wright, S. J., J. B. Yavitt, N. Wurzburger, B. L. Turner, E. V. J. Tanner, E. J. Sayer, L. S.
Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production

FIGURE LEGENDS

Figure 1. Locations of the target trees with dendrometer bands (dots on the map) in the 24 ha plot (600 x 400 m). Differently sized dots indicate different diameters at breast height. Elevation contour lines are shown at the 10 m scale. The 40 x 40 m quadrats plotted with dashed lines were randomly placed to sample trees for installing dendrometer bands (see METHODS for detailed description).

Figure 2. Pearson correlations between annual growth rates for the same individual using different measurement protocols. Abbreviations: AGR-5 = annual average growth rate calculated from a 5-year census interval; AGR-2 = annual average growth rate calculated from a 2-year census interval using dendrometer data; AGR-W = annual average growth rate for the warm season using dendrometer data; AGR-C = annual average growth rate for the cold season using dendrometer data.

Figure 3. The structural equation models for the effect of functional traits at individual level, environmental factors and neighborhood composition on a) AGR-5, b) AGR-2, c) AGR-W, d) AGR-C. Arrows represent the hypothesized causal relationships between variables. Green color indicates positive relationships. Orange color indicates negative relationships. Arrow width indicates the strength of the relationship. Values next to the arrows are path coefficients (standardized partial regression coefficients) with associated statistical significance (*** p<0.001; ** p<0.01; * p<0.05; (*) p<0.1; ns: non significant). Values at the upper right corner of variables represent the percentage of variance explained by the model. Variable abbreviations for growth variables are the same as in Figure 2; Abbreviations of AGR-5, AGR-2, AGR-W and AGR-C are the same as in Figure 2; Env = environmental factors; Nei = neighborhood composition index; BA-c = conspecific basal area; BA-h = heterospecific basal area; AB-h = heterospecific abundance; SLA = specific leaf area; Ks = specific hydraulic conductivity; SD = stomatal density; Bark = bark thickness.
Figure 4. Relation between tree height and individual growth rate based on 2 years of growth measured using dendrometers. Individual-level data are grey dots and species-level data are black dots. Abbreviation is the same as in Figure 2. The x-axis for height was log-transformed and y-axis for AGR-2 was square-root transformed. * p<0.05; ** p<0.01; *** p<0.001.
FIGURES

Figure 1
Figure 2

- AGR-5 (mm/yr) vs AGR-2 (mm/yr) with $r=0.63^{***}$
- AGR-W (mm/yr) vs AGR-2 (mm/yr) with $r=0.97^{***}$
- AGR-C (mm/yr) vs AGR-W (mm/yr) with $r=0.71^{***}$
- AGR-C (mm/yr) vs AGR-2 (mm/yr) with $r=0.82^{***}$
Figure 3