Header

UZH-Logo

Maintenance Infos

Predicting stochastic community dynamics in grasslands under the assumption of competitive symmetry


Lohier, Théophile; Jabot, Franck; Wigelt, Alexandra; Schmid, Bernhard; Deffuant, Guillaume (2016). Predicting stochastic community dynamics in grasslands under the assumption of competitive symmetry. Journal of Theoretical Biology, 399:53-61.

Abstract

Community dynamics is influenced by multiple ecological processes such as environmental spatiotemporal variation, competition between individuals and demographic stochasticity. Quantifying the respective influence of these various processes and making predictions on community dynamics require the use of a dynamical framework encompassing these various components. We here demonstrate how to adapt the framework of stochastic community dynamics to the peculiarities of herbaceous communities, by using a short temporal resolution adapted to the time scale of competition between herbaceous plants, and by taking into account the seasonal drops in plant aerial biomass following winter, harvesting or consumption by herbivores. We develop a hybrid inference method for this novel modelling framework that both uses numerical simulations and likelihood computations. Applying this methodology to empirical data from the Jena biodiversity experiment, we find that environmental stochasticity has a larger effect on community dynamics than demographic stochasticity, and that both effects are generally smaller than observation errors at the plot scale. We further evidence that plant intrinsic growth rates and carrying capacities are moderately predictable from plant vegetative height, specific leaf area and leaf dry matter content. We do not find any trade-off between demographical components, since species with larger intrinsic growth rates tend to also have lower demographic and environmental variances. Finally, we find that our model is able to make relatively good predictions of multi-specific community dynamics based on the assumption of competitive symmetry.

Abstract

Community dynamics is influenced by multiple ecological processes such as environmental spatiotemporal variation, competition between individuals and demographic stochasticity. Quantifying the respective influence of these various processes and making predictions on community dynamics require the use of a dynamical framework encompassing these various components. We here demonstrate how to adapt the framework of stochastic community dynamics to the peculiarities of herbaceous communities, by using a short temporal resolution adapted to the time scale of competition between herbaceous plants, and by taking into account the seasonal drops in plant aerial biomass following winter, harvesting or consumption by herbivores. We develop a hybrid inference method for this novel modelling framework that both uses numerical simulations and likelihood computations. Applying this methodology to empirical data from the Jena biodiversity experiment, we find that environmental stochasticity has a larger effect on community dynamics than demographic stochasticity, and that both effects are generally smaller than observation errors at the plot scale. We further evidence that plant intrinsic growth rates and carrying capacities are moderately predictable from plant vegetative height, specific leaf area and leaf dry matter content. We do not find any trade-off between demographical components, since species with larger intrinsic growth rates tend to also have lower demographic and environmental variances. Finally, we find that our model is able to make relatively good predictions of multi-specific community dynamics based on the assumption of competitive symmetry.

Statistics

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

26 downloads since deposited on 13 Sep 2016
26 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:21 June 2016
Deposited On:13 Sep 2016 13:26
Last Modified:08 Dec 2017 20:22
Publisher:Elsevier
ISSN:0022-5193
Publisher DOI:https://doi.org/10.1016/j.jtbi.2016.03.043
PubMed ID:27060673

Download

Download PDF  'Predicting stochastic community dynamics in grasslands under the assumption of competitive symmetry'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)