Header

UZH-Logo

Maintenance Infos

Apomixis Allows the Transgenerational Fixation of Phenotypes in Hybrid Plants


Sailer, Christian; Schmid, Bernhard; Grossniklaus, Ueli (2016). Apomixis Allows the Transgenerational Fixation of Phenotypes in Hybrid Plants. Current Biology, 26(3):331-337.

Abstract

The introduction of apomixis-asexual reproduction through seeds-into crop plants is considered the holy grail of agriculture, as it would provide a mechanism to maintain agriculturally important phenotypes [1, 2]. Apomicts produce clonal offspring, such that apomixis could be used to transgenerationally fix any genotype, including that of F1 hybrids, which are used in agriculture due to their superior vigor and yield [3-9]. However, traits (phenotypes) do not only result from a complex combination of genetic and environmental variation but can also be influenced by epigenetic variation, which can be transgenerationally heritable in plants [10-15]. Hence, it is far from clear whether genetic fixation by apomixis suffices to fix the agriculturally relevant phenotypes of F1 hybrids, in particular because hybridization was recently shown to induce epigenetic changes [16, 17]. Here, we show that the phenotypes of Hieracium pilosella hybrids can be fixed across generations by apomixis. Using a natural apomict, we created 11 hybrid genotypes (lines). In these and a parental line, we analyzed 20 phenotypic traits that are related to plant growth and reproduction. Of the 20 traits, 18 (90%) were stably inherited over two apomictic generations, grown at the same time in a randomized design, in 11 of the 12 lines. Although one hybrid line showed phenotypic instability, our results provide a fundamental proof of principle, demonstrating that apomixis can indeed be used in plant breeding and seed production to fix complex, quantitative phenotypes across generations.

Abstract

The introduction of apomixis-asexual reproduction through seeds-into crop plants is considered the holy grail of agriculture, as it would provide a mechanism to maintain agriculturally important phenotypes [1, 2]. Apomicts produce clonal offspring, such that apomixis could be used to transgenerationally fix any genotype, including that of F1 hybrids, which are used in agriculture due to their superior vigor and yield [3-9]. However, traits (phenotypes) do not only result from a complex combination of genetic and environmental variation but can also be influenced by epigenetic variation, which can be transgenerationally heritable in plants [10-15]. Hence, it is far from clear whether genetic fixation by apomixis suffices to fix the agriculturally relevant phenotypes of F1 hybrids, in particular because hybridization was recently shown to induce epigenetic changes [16, 17]. Here, we show that the phenotypes of Hieracium pilosella hybrids can be fixed across generations by apomixis. Using a natural apomict, we created 11 hybrid genotypes (lines). In these and a parental line, we analyzed 20 phenotypic traits that are related to plant growth and reproduction. Of the 20 traits, 18 (90%) were stably inherited over two apomictic generations, grown at the same time in a randomized design, in 11 of the 12 lines. Although one hybrid line showed phenotypic instability, our results provide a fundamental proof of principle, demonstrating that apomixis can indeed be used in plant breeding and seed production to fix complex, quantitative phenotypes across generations.

Statistics

Citations

3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

15 downloads since deposited on 13 Sep 2016
14 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:28 January 2016
Deposited On:13 Sep 2016 13:44
Last Modified:08 Dec 2017 20:22
Publisher:Cell Press (Elsevier)
ISSN:0960-9822
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.cub.2015.12.045

Download

Download PDF  'Apomixis Allows the Transgenerational Fixation of Phenotypes in Hybrid Plants'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 231kB
View at publisher