Header

UZH-Logo

Maintenance Infos

Magnetic resonance q mapping reveals a decrease in microvessel density in the arcaβ mouse model of cerebral amyloidosis


Ielacqua, Giovanna D; Schlegel, Felix; Füchtemeier, Martina; Xandry, Jael; Rudin, Markus; Klohs, Jan (2015). Magnetic resonance q mapping reveals a decrease in microvessel density in the arcaβ mouse model of cerebral amyloidosis. Frontiers in Aging Neuroscience, 7:241.

Abstract

Alterations in density and morphology of the cerebral microvasculature have been reported to occur in Alzheimer's disease patients and animal models of the disease. In this study we compared magnetic resonance imaging (MRI) techniques for their utility to detect age-dependent changes of the cerebral vasculature in the arcAβ mouse model of cerebral amyloidosis. Dynamic susceptibility contrast (DSC)-MRI was performed by tracking the passage of a superparamagnetic iron oxide nanoparticle in the brain with dynamic gradient echo planar imaging (EPI). From this measurements relative cerebral blood volume [rCBV(DSC)] and relative cerebral blood flow (rCBF) were estimated. For the same animal maps of the relaxation shift index Q were computed from high resolution gradient echo and spin echo data that were acquired before and after superparamagnetic iron oxide (SPIO) nanoparticle injection. Q-values were used to derive estimates of microvessel density. The change in the relaxation rates [Formula: see text] obtained from pre- and post-contrast gradient echo data was used for the alternative determination of rCBV [rCBV([Formula: see text])]. Linear mixed effects modeling found no significant association between rCBV(DSC), rCBV([Formula: see text]), rCBF, and Q with genotype in 13-month old mice [compared to age-matched non-transgenic littermates (NTLs)] for any of the evaluated brain regions. In 24-month old mice there was a significant association for rCBV(DSC) with genotype in the cerebral cortex, and for rCBV([Formula: see text]) in the cerebral cortex and cerebellum. For rCBF there was a significant association in the cerebellum but not in other brain regions. Q-values in the olfactory bulb, cerebral cortex, striatum, hippocampus, and cerebellum in 24-month old mice were significantly associated with genotype. In those regions Q-values were reduced between 11 and 26% in arcAβ mice compared to age-matched NTLs. Vessel staining with CD31 immunohistochemistry confirmed a reduction of microvessel density in the old arcAβ mice. We further demonstrated a region-specific association between parenchymal and vascular deposition of β-amyloid and decreased vascular density, without a correlation with the amount of Aβ deposition. We found that Q mapping was more suitable than the hemodynamic read-outs to detect amyloid-related degeneration of the cerebral microvasculature.

Abstract

Alterations in density and morphology of the cerebral microvasculature have been reported to occur in Alzheimer's disease patients and animal models of the disease. In this study we compared magnetic resonance imaging (MRI) techniques for their utility to detect age-dependent changes of the cerebral vasculature in the arcAβ mouse model of cerebral amyloidosis. Dynamic susceptibility contrast (DSC)-MRI was performed by tracking the passage of a superparamagnetic iron oxide nanoparticle in the brain with dynamic gradient echo planar imaging (EPI). From this measurements relative cerebral blood volume [rCBV(DSC)] and relative cerebral blood flow (rCBF) were estimated. For the same animal maps of the relaxation shift index Q were computed from high resolution gradient echo and spin echo data that were acquired before and after superparamagnetic iron oxide (SPIO) nanoparticle injection. Q-values were used to derive estimates of microvessel density. The change in the relaxation rates [Formula: see text] obtained from pre- and post-contrast gradient echo data was used for the alternative determination of rCBV [rCBV([Formula: see text])]. Linear mixed effects modeling found no significant association between rCBV(DSC), rCBV([Formula: see text]), rCBF, and Q with genotype in 13-month old mice [compared to age-matched non-transgenic littermates (NTLs)] for any of the evaluated brain regions. In 24-month old mice there was a significant association for rCBV(DSC) with genotype in the cerebral cortex, and for rCBV([Formula: see text]) in the cerebral cortex and cerebellum. For rCBF there was a significant association in the cerebellum but not in other brain regions. Q-values in the olfactory bulb, cerebral cortex, striatum, hippocampus, and cerebellum in 24-month old mice were significantly associated with genotype. In those regions Q-values were reduced between 11 and 26% in arcAβ mice compared to age-matched NTLs. Vessel staining with CD31 immunohistochemistry confirmed a reduction of microvessel density in the old arcAβ mice. We further demonstrated a region-specific association between parenchymal and vascular deposition of β-amyloid and decreased vascular density, without a correlation with the amount of Aβ deposition. We found that Q mapping was more suitable than the hemodynamic read-outs to detect amyloid-related degeneration of the cerebral microvasculature.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
3 citations in Scopus®
3 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

10 downloads since deposited on 29 Sep 2016
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology

04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2015
Deposited On:29 Sep 2016 14:15
Last Modified:14 Feb 2018 11:28
Publisher:Frontiers Research Foundation
ISSN:1663-4365
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.3389/fnagi.2015.00241
PubMed ID:26834622

Download

Download PDF  'Magnetic resonance q mapping reveals a decrease in microvessel density in the arcaβ mouse model of cerebral amyloidosis'.
Preview
Content: Published Version
Filetype: PDF
Size: 3MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)