Header

UZH-Logo

Maintenance Infos

Simultaneous multislice diffusion-weighted imaging of the kidney: a systematic analysis of image quality


Kenkel, David; Barth, Borna K; Piccirelli, Marco; Filli, Lukas; Finkenstädt, Tim; Reiner, Cäcilia S; Boss, Andreas (2017). Simultaneous multislice diffusion-weighted imaging of the kidney: a systematic analysis of image quality. Investigative Radiology, 52(3):163-169.

Abstract

OBJECTIVES The aims of this study were to implement a protocol for simultaneous multislice (SMS) accelerated diffusion-weighted imaging (DWI) of the kidneys and to perform a systematic analysis of image quality of the data sets. MATERIALS AND METHODS Ten healthy subjects and 5 patients with renal masses underwent DWI of the kidney in this prospective institutional review board-approved study on a 3 T magnetic resonance scanner. Simultaneous multislice DWI echo-planar sequences (acceleration factors [AFs] 2 and 3) were compared with conventional echo-planar DWI as reference standard for each acquisition scheme. The following 3 acquisition schemes were applied: comparison A, with increased number of acquisitions at constant scan time; comparison B, with reduction of acquisition time; and comparison C, with increased slice resolution (constant acquisition time, increasing number of slices). Interreader reliability was analyzed by calculating the intraclass correlation coefficient (ICC). Qualitative image quality features were evaluated by 2 independent radiologists on a 5-point Likert scale. Quantification accuracy of the apparent diffusion coefficients (ADCs) and signal-to-noise ratios (SNRs) were assessed by region of interest analysis. Furthermore, lesion conspicuity in the 5 patients was assessed using a 5-point Likert scale by 2 independent radiologists. RESULTS Interreader agreement was substantial with an ICC of 0.68 for the overall image quality and an ICC of 0.73 for the analysis of artifacts. In comparison A, AF2 resulted in increased SNR (P < 0.05) by 21% at stable image quality scores (image quality: P = 0.76, artifacts: P = 0.21). In comparison B, applying AF2, the scan time could be reduced by 46% without significant reduction in qualitative image quality scores (P = 0.059) or SNR (P = 0.126). In comparison C, slice resolution could be improved by 28% using AF2 with stable image quality scores and SNR. In general, AF3 resulted in reduced image quality and SNR. Significantly reduced ADC values were observed for AF3 in comparison C (cortex: P = 0.003; medulla: P = 0.001) compared with the standard echo-planar imaging sequence. The conventional DWI and the SMS DWI with AF2 showed stable lesion conspicuity ([AF1/AF2]: reader 1 [1.8/1.4] and reader 2 [1.8/1.4]). The lesion conspicuity was lower using AF3 (reader 1: 2.2 and reader 2: 1.8). CONCLUSIONS In conclusion, SMS DWI of the kidney is a potential tool to substantially reduce scan time without negative effects on SNR, ADC quantification accuracy, and image quality if an AF2 is used. Although AF3 results in even higher scan time reduction, a negative impact on image quality, SNR, ADC quantification accuracy, and lesion conspicuity must be considered.

Abstract

OBJECTIVES The aims of this study were to implement a protocol for simultaneous multislice (SMS) accelerated diffusion-weighted imaging (DWI) of the kidneys and to perform a systematic analysis of image quality of the data sets. MATERIALS AND METHODS Ten healthy subjects and 5 patients with renal masses underwent DWI of the kidney in this prospective institutional review board-approved study on a 3 T magnetic resonance scanner. Simultaneous multislice DWI echo-planar sequences (acceleration factors [AFs] 2 and 3) were compared with conventional echo-planar DWI as reference standard for each acquisition scheme. The following 3 acquisition schemes were applied: comparison A, with increased number of acquisitions at constant scan time; comparison B, with reduction of acquisition time; and comparison C, with increased slice resolution (constant acquisition time, increasing number of slices). Interreader reliability was analyzed by calculating the intraclass correlation coefficient (ICC). Qualitative image quality features were evaluated by 2 independent radiologists on a 5-point Likert scale. Quantification accuracy of the apparent diffusion coefficients (ADCs) and signal-to-noise ratios (SNRs) were assessed by region of interest analysis. Furthermore, lesion conspicuity in the 5 patients was assessed using a 5-point Likert scale by 2 independent radiologists. RESULTS Interreader agreement was substantial with an ICC of 0.68 for the overall image quality and an ICC of 0.73 for the analysis of artifacts. In comparison A, AF2 resulted in increased SNR (P < 0.05) by 21% at stable image quality scores (image quality: P = 0.76, artifacts: P = 0.21). In comparison B, applying AF2, the scan time could be reduced by 46% without significant reduction in qualitative image quality scores (P = 0.059) or SNR (P = 0.126). In comparison C, slice resolution could be improved by 28% using AF2 with stable image quality scores and SNR. In general, AF3 resulted in reduced image quality and SNR. Significantly reduced ADC values were observed for AF3 in comparison C (cortex: P = 0.003; medulla: P = 0.001) compared with the standard echo-planar imaging sequence. The conventional DWI and the SMS DWI with AF2 showed stable lesion conspicuity ([AF1/AF2]: reader 1 [1.8/1.4] and reader 2 [1.8/1.4]). The lesion conspicuity was lower using AF3 (reader 1: 2.2 and reader 2: 1.8). CONCLUSIONS In conclusion, SMS DWI of the kidney is a potential tool to substantially reduce scan time without negative effects on SNR, ADC quantification accuracy, and image quality if an AF2 is used. Although AF3 results in even higher scan time reduction, a negative impact on image quality, SNR, ADC quantification accuracy, and lesion conspicuity must be considered.

Statistics

Altmetrics

Downloads

0 downloads since deposited on 06 Oct 2016
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Neuroradiology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:March 2017
Deposited On:06 Oct 2016 08:46
Last Modified:07 Feb 2017 17:15
Publisher:Lippincott Williams & Wilkins
ISSN:0020-9996
Publisher DOI:https://doi.org/10.1097/RLI.0000000000000323
PubMed ID:27662577

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only until 1 October 2017
Size: 802kB
View at publisher
Embargo till: 2017-10-01

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations