Header

UZH-Logo

Maintenance Infos

In situ mapping of innate lymphoid cells in human skin: evidence for remarkable differences between normal and inflamed skin


Brüggen, Marie-Charlotte; Bauer, Wolfgang M; Reininger, Bärbel; Clim, Eduard; Captarencu, Catalin; Steiner, Georg E; Brunner, Patrick M; Meier, Barbara; French, Lars E; Stingl, Georg (2016). In situ mapping of innate lymphoid cells in human skin: evidence for remarkable differences between normal and inflamed skin. Journal of Investigative Dermatology, 136(12):2396-2405.

Abstract

Although innate lymphoid cells (ILCs) have recently been identified also in skin, their role in this organ remains poorly understood. In this study, we aimed at developing a technique to assess ILCs in situ and to determine their topographical distribution in human skin. We collected lesional skin biopsies from patients with atopic dermatitis and psoriasis (both n = 13) and normal human skin from healthy controls. After establishing immunofluorescence ILC in situ stainings, we developed an analysis approach (gating combined with manual validation) to reliably identify ILCs. Topographical mapping was obtained by automated calculations of the distances between ILCs and different cellular/structural elements of the skin. Whereas normal human skin harbored a very scarce ILC population (mostly ILC1s and AHR+ILC3s), atopic dermatitis and psoriasis skin was infiltrated by clearly visible ILC subsets. We observed atopic dermatitis skin to contain not only ILC2s but also a prominent AHR+ILC3 population. Conversely, we encountered almost equal proportions of ILC1s and RORC+ILC3s in psoriasis skin. Distance calculations revealed ILCs to reside near the epidermis and in close proximity to T lymphocytes. ILC mapping in situ will provide valuable information about their likely communication partners in normal and diseased skin and forms the basis for the appropriate mechanistic studies.

Abstract

Although innate lymphoid cells (ILCs) have recently been identified also in skin, their role in this organ remains poorly understood. In this study, we aimed at developing a technique to assess ILCs in situ and to determine their topographical distribution in human skin. We collected lesional skin biopsies from patients with atopic dermatitis and psoriasis (both n = 13) and normal human skin from healthy controls. After establishing immunofluorescence ILC in situ stainings, we developed an analysis approach (gating combined with manual validation) to reliably identify ILCs. Topographical mapping was obtained by automated calculations of the distances between ILCs and different cellular/structural elements of the skin. Whereas normal human skin harbored a very scarce ILC population (mostly ILC1s and AHR+ILC3s), atopic dermatitis and psoriasis skin was infiltrated by clearly visible ILC subsets. We observed atopic dermatitis skin to contain not only ILC2s but also a prominent AHR+ILC3 population. Conversely, we encountered almost equal proportions of ILC1s and RORC+ILC3s in psoriasis skin. Distance calculations revealed ILCs to reside near the epidermis and in close proximity to T lymphocytes. ILC mapping in situ will provide valuable information about their likely communication partners in normal and diseased skin and forms the basis for the appropriate mechanistic studies.

Statistics

Citations

4 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 17 Oct 2016
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Dermatology Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2016
Deposited On:17 Oct 2016 10:26
Last Modified:08 Dec 2017 20:33
Publisher:Elsevier
ISSN:0022-202X
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.jid.2016.07.017

Download