Header

UZH-Logo

Maintenance Infos

Type 2 Interleukin-4 Receptor Signaling in Neutrophils Antagonizes Their Expansion and Migration during Infection and Inflammation


Woytschak, Janine; Keller, Nadia; Krieg, Carsten; Impellizzieri, Daniela; Thompson, Robert W; Wynn, Thomas A; Zinkernagel, Annelies S; Boyman, Onur (2016). Type 2 Interleukin-4 Receptor Signaling in Neutrophils Antagonizes Their Expansion and Migration during Infection and Inflammation. Immunity, 45(1):172-184.

Abstract

Neutrophils are the first immune cells recruited to sites of inflammation and infection. However, patients with allergic disorders such as atopic dermatitis show a paucity of skin neutrophils and are prone to bacterial skin infections, suggesting that allergic inflammation curtails neutrophil responses. Here we have shown that the type 2 cell signature cytokine interleukin-4 (IL-4) hampers neutrophil expansion and migration by antagonizing granulocyte colony-stimulating factor (G-CSF) and chemokine receptor-mediated signals. Cutaneous bacterial infection in mice was exacerbated by IL-4 signaling and improved with IL-4 inhibition, each outcome inversely correlating with neutrophil migration to skin. Likewise, systemic bacterial infection was worsened by heightened IL-4 activity, with IL-4 restricting G-CSF-induced neutrophil expansion and migration to tissues by affecting CXCR2-CXCR4 chemokine signaling in neutrophils. These effects were dependent on IL-4 acting through type 2 IL-4 receptors on neutrophils. Thus, targeting IL-4 might be beneficial in neutropenic conditions with increased susceptibility to bacterial infections.

Abstract

Neutrophils are the first immune cells recruited to sites of inflammation and infection. However, patients with allergic disorders such as atopic dermatitis show a paucity of skin neutrophils and are prone to bacterial skin infections, suggesting that allergic inflammation curtails neutrophil responses. Here we have shown that the type 2 cell signature cytokine interleukin-4 (IL-4) hampers neutrophil expansion and migration by antagonizing granulocyte colony-stimulating factor (G-CSF) and chemokine receptor-mediated signals. Cutaneous bacterial infection in mice was exacerbated by IL-4 signaling and improved with IL-4 inhibition, each outcome inversely correlating with neutrophil migration to skin. Likewise, systemic bacterial infection was worsened by heightened IL-4 activity, with IL-4 restricting G-CSF-induced neutrophil expansion and migration to tissues by affecting CXCR2-CXCR4 chemokine signaling in neutrophils. These effects were dependent on IL-4 acting through type 2 IL-4 receptors on neutrophils. Thus, targeting IL-4 might be beneficial in neutropenic conditions with increased susceptibility to bacterial infections.

Statistics

Citations

3 citations in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 21 Oct 2016
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Immunology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Infectious Diseases
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:19 July 2016
Deposited On:21 Oct 2016 10:45
Last Modified:27 Feb 2017 08:26
Publisher:Cell Press (Elsevier)
ISSN:1074-7613
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.immuni.2016.06.025
PubMed ID:27438770

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 3MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations