Header

UZH-Logo

Maintenance Infos

A practical approach for extracting tree models in forest environments based on equirectangular projections of terrestrial laser scans


Eysn, Lothar; Pfeifer, Norbert; Ressl, Camillo; Hollaus, Markus; Grafl, Andreas; Morsdorf, Felix (2013). A practical approach for extracting tree models in forest environments based on equirectangular projections of terrestrial laser scans. Remote Sensing, 5(11):5424-5448.

Abstract

Extracting 3D tree models based on terrestrial laser scanning (TLS) point clouds is a challenging task as trees are complex objects. Current TLS devices acquire high-density data that allow a detailed reconstruction of the tree topology. However, in dense forests a fully automatic reconstruction of trees is often limited by occlusion, wind influences and co-registration issues. In this paper, a semi-automatic method for extracting branching and stem structure based on equirectangular projections (range and intensity maps) is presented. The digitization of branches and stems is based on 2D maps, which enables simple navigation and raster processing. The modeling is performed for each viewpoint individually instead of using a registered point cloud. Previously reconstructed 2D-skeletons are transformed between the maps. Therefore, wind influences, orientation imperfections of scans and data gaps can be overcome. The method is applied to a TLS dataset acquired in a forest in Germany. In total 34 scans were carried out within a managed forest to measure approximately 90 spruce trees with minimal occlusions. The results demonstrate the feasibility of the presented approach to extract tree models with a high completeness and correctness and provide an excellent input for further modeling applications.

Abstract

Extracting 3D tree models based on terrestrial laser scanning (TLS) point clouds is a challenging task as trees are complex objects. Current TLS devices acquire high-density data that allow a detailed reconstruction of the tree topology. However, in dense forests a fully automatic reconstruction of trees is often limited by occlusion, wind influences and co-registration issues. In this paper, a semi-automatic method for extracting branching and stem structure based on equirectangular projections (range and intensity maps) is presented. The digitization of branches and stems is based on 2D maps, which enables simple navigation and raster processing. The modeling is performed for each viewpoint individually instead of using a registered point cloud. Previously reconstructed 2D-skeletons are transformed between the maps. Therefore, wind influences, orientation imperfections of scans and data gaps can be overcome. The method is applied to a TLS dataset acquired in a forest in Germany. In total 34 scans were carried out within a managed forest to measure approximately 90 spruce trees with minimal occlusions. The results demonstrate the feasibility of the presented approach to extract tree models with a high completeness and correctness and provide an excellent input for further modeling applications.

Statistics

Citations

28 citations in Web of Science®
24 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

13 downloads since deposited on 02 Nov 2016
13 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2013
Deposited On:02 Nov 2016 10:10
Last Modified:02 Nov 2016 10:10
Publisher:MDPI Publishing
ISSN:2072-4292
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3390/rs5115424

Download

Preview Icon on Download
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 5MB
View at publisher
Licence: Creative Commons: Attribution 3.0 Unported (CC BY 3.0)