Header

UZH-Logo

Maintenance Infos

Developmental changes in sleep spindle characteristics and sigma power across early childhood


McClain, Ian J; Lustenberger, Caroline; Achermann, Peter; Lassonde, Jonathan M; Kurth, Salome; LeBourgeois, Monique K (2016). Developmental changes in sleep spindle characteristics and sigma power across early childhood. Neural Plasticity, 2016:3670951.

Abstract

Sleep spindles, a prominent feature of the non-rapid eye movement (NREM) sleep electroencephalogram (EEG), are linked to cognitive abilities. Early childhood is a time of rapid cognitive and neurophysiological maturation; however, little is known about developmental changes in sleep spindles. In this study, we longitudinally examined trajectories of multiple sleep spindle characteristics (i.e., spindle duration, frequency, integrated spindle amplitude, and density) and power in the sigma frequency range (10-16 Hz) across ages 2, 3, and 5 years (n = 8; 3 males). At each time point, nocturnal sleep EEG was recorded in-home after 13-h of prior wakefulness. Spindle duration, integrated spindle amplitude, and sigma power increased with age across all EEG derivations (C3A2, C4A1, O2A1, and O1A2; all ps < 0.05). We also found a developmental decrease in mean spindle frequency (p < 0.05) but no change in spindle density with increasing age. Thus, sleep spindles increased in duration and amplitude but decreased in frequency across early childhood. Our data characterize early developmental changes in sleep spindles, which may advance understanding of thalamocortical brain connectivity and associated lifelong disease processes. These findings also provide unique insights into spindle ontogenesis in early childhood and may help identify electrophysiological features related to healthy and aberrant brain maturation.

Abstract

Sleep spindles, a prominent feature of the non-rapid eye movement (NREM) sleep electroencephalogram (EEG), are linked to cognitive abilities. Early childhood is a time of rapid cognitive and neurophysiological maturation; however, little is known about developmental changes in sleep spindles. In this study, we longitudinally examined trajectories of multiple sleep spindle characteristics (i.e., spindle duration, frequency, integrated spindle amplitude, and density) and power in the sigma frequency range (10-16 Hz) across ages 2, 3, and 5 years (n = 8; 3 males). At each time point, nocturnal sleep EEG was recorded in-home after 13-h of prior wakefulness. Spindle duration, integrated spindle amplitude, and sigma power increased with age across all EEG derivations (C3A2, C4A1, O2A1, and O1A2; all ps < 0.05). We also found a developmental decrease in mean spindle frequency (p < 0.05) but no change in spindle density with increasing age. Thus, sleep spindles increased in duration and amplitude but decreased in frequency across early childhood. Our data characterize early developmental changes in sleep spindles, which may advance understanding of thalamocortical brain connectivity and associated lifelong disease processes. These findings also provide unique insights into spindle ontogenesis in early childhood and may help identify electrophysiological features related to healthy and aberrant brain maturation.

Statistics

Citations

1 citation in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

8 downloads since deposited on 03 Nov 2016
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2016
Deposited On:03 Nov 2016 08:31
Last Modified:08 Dec 2017 20:41
Publisher:Hindawi Publishing Corporation
ISSN:0792-8483
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1155/2016/3670951
PubMed ID:27110405

Download

Download PDF  'Developmental changes in sleep spindle characteristics and sigma power across early childhood'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)