Header

UZH-Logo

Maintenance Infos

Differentiating between rain, snow, and glacier contributions to river discharge in the western Himalaya using remote-sensing data and distributed hydrological modeling


Wulf, Hendrik; Bookhagen, Bodo; Scherler, Dirk (2016). Differentiating between rain, snow, and glacier contributions to river discharge in the western Himalaya using remote-sensing data and distributed hydrological modeling. Advances in Water Resources, 88:152-169.

Abstract

Rivers draining the southern Himalaya provide most of the water supply for the densely populated Indo-Gangetic plains. Despite the importance of water resources in light of climate change, the relative contributions of rainfall, snow and glacier melt to discharge are not well understood, due to the scarcity of ground-based data in this complex terrain. Here, we quantify discharge sources in the Sutlej Valley, western Himalaya, from 2000 to 2012 with a distributed hydrological model that is based on daily, ground-calibrated remote-sensing observation. Based on the consistently good model performance, we analyzed the spatiotemporal distribution of hydrologic components and quantified their contribution to river discharge. Our results indicate that the Sutlej River's annual discharge at the mountain front is sourced to 55% by effective rainfall (rainfall reduced by evapotranspiration), 35% by snow melt and 10% by glacier melt. In the high-elevation orogenic interior glacial runoff contributes ∼30% to annual river discharge. These glacier melt contributions are especially important during years with substantially reduced rainfall and snowmelt runoff, as during 2004, to compensate for low river discharge and ensure sustained water supply and hydropower generation. In 2004, discharge of the Sutlej River totaled only half the maximum annual discharge; with 17.3% being sourced by glacier melt. Our findings underscore the importance of calibrating remote-sensing data with ground-based data to constrain hydrological models with reasonable accuracy. For instance, we found that TRMM (Tropical Rainfall Measuring Mission) product 3B42 V7 systematically overestimates rainfall in arid regions of our study area by a factor of up to 5. By quantifying the spatiotemporal distribution of water resources we provide an important assessment of the potential impact of global warming on river discharge in the western Himalaya. Given the near-global coverage of the utilized remote-sensing datasets this hydrological modeling approach can be readily transferred to other data-sparse regions.

Abstract

Rivers draining the southern Himalaya provide most of the water supply for the densely populated Indo-Gangetic plains. Despite the importance of water resources in light of climate change, the relative contributions of rainfall, snow and glacier melt to discharge are not well understood, due to the scarcity of ground-based data in this complex terrain. Here, we quantify discharge sources in the Sutlej Valley, western Himalaya, from 2000 to 2012 with a distributed hydrological model that is based on daily, ground-calibrated remote-sensing observation. Based on the consistently good model performance, we analyzed the spatiotemporal distribution of hydrologic components and quantified their contribution to river discharge. Our results indicate that the Sutlej River's annual discharge at the mountain front is sourced to 55% by effective rainfall (rainfall reduced by evapotranspiration), 35% by snow melt and 10% by glacier melt. In the high-elevation orogenic interior glacial runoff contributes ∼30% to annual river discharge. These glacier melt contributions are especially important during years with substantially reduced rainfall and snowmelt runoff, as during 2004, to compensate for low river discharge and ensure sustained water supply and hydropower generation. In 2004, discharge of the Sutlej River totaled only half the maximum annual discharge; with 17.3% being sourced by glacier melt. Our findings underscore the importance of calibrating remote-sensing data with ground-based data to constrain hydrological models with reasonable accuracy. For instance, we found that TRMM (Tropical Rainfall Measuring Mission) product 3B42 V7 systematically overestimates rainfall in arid regions of our study area by a factor of up to 5. By quantifying the spatiotemporal distribution of water resources we provide an important assessment of the potential impact of global warming on river discharge in the western Himalaya. Given the near-global coverage of the utilized remote-sensing datasets this hydrological modeling approach can be readily transferred to other data-sparse regions.

Statistics

Citations

Dimensions.ai Metrics
13 citations in Web of Science®
12 citations in Scopus®
17 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 03 Nov 2016
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2016
Deposited On:03 Nov 2016 09:21
Last Modified:02 Feb 2018 10:34
Publisher:Elsevier
ISSN:0309-1708
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.advwatres.2015.12.004

Download