Header

UZH-Logo

Maintenance Infos

Context-aware location recommendation using geotagged photos in social media


Huang, Haosheng (2016). Context-aware location recommendation using geotagged photos in social media. ISPRS International Journal of Geo-Information, 5(12):195.

Abstract

Recently, the increasing availability of digital cameras and the rapid advances in social media have led to the accumulation of a large number of geotagged photos, which may reflect people’s travel experiences in different cities and can be used to generate location recommendations for tourists. Research on this aspect mainly focused on providing personalized recommendations matching a tourist’s travel preferences, while ignoring the context of the visit (e.g., weather, season and time of the day) that potentially influences his/her travel behavior. This article explores context-aware methods to provide location recommendations matching a tourist’s travel preferences and visiting context. Specifically, we apply clustering methods to detect touristic locations and extract travel histories from geotagged photos on Flickr. We then propose a novel context similarity measure to quantify the similarity between any two contexts and develop three context-aware collaborative filtering methods, i.e., contextual pre-filtering, post-filtering and modeling. With these methods, location recommendations like “in similar contexts, other tourists similar to you often visited . . . ” can be provided to the current user. Results of the evaluation with a publicly-available Flickr photo collection show that these methods are able to provide a tourist with location recommendations matching his/her travel preferences and visiting context. More importantly, compared to other state-of-the-art methods, the proposed methods, which employ the introduced context similarity measure, can provide tourists with significantly better recommendations. While Flickr data have been used in this study, these context-aware collaborative filtering (CaCF) methods can also be extended for other kinds of travel histories, such as GPS trajectories and Foursquare check-ins, to provide context-aware recommendations.

Abstract

Recently, the increasing availability of digital cameras and the rapid advances in social media have led to the accumulation of a large number of geotagged photos, which may reflect people’s travel experiences in different cities and can be used to generate location recommendations for tourists. Research on this aspect mainly focused on providing personalized recommendations matching a tourist’s travel preferences, while ignoring the context of the visit (e.g., weather, season and time of the day) that potentially influences his/her travel behavior. This article explores context-aware methods to provide location recommendations matching a tourist’s travel preferences and visiting context. Specifically, we apply clustering methods to detect touristic locations and extract travel histories from geotagged photos on Flickr. We then propose a novel context similarity measure to quantify the similarity between any two contexts and develop three context-aware collaborative filtering methods, i.e., contextual pre-filtering, post-filtering and modeling. With these methods, location recommendations like “in similar contexts, other tourists similar to you often visited . . . ” can be provided to the current user. Results of the evaluation with a publicly-available Flickr photo collection show that these methods are able to provide a tourist with location recommendations matching his/her travel preferences and visiting context. More importantly, compared to other state-of-the-art methods, the proposed methods, which employ the introduced context similarity measure, can provide tourists with significantly better recommendations. While Flickr data have been used in this study, these context-aware collaborative filtering (CaCF) methods can also be extended for other kinds of travel histories, such as GPS trajectories and Foursquare check-ins, to provide context-aware recommendations.

Statistics

Citations

Altmetrics

Downloads

11 downloads since deposited on 08 Nov 2016
11 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2016
Deposited On:08 Nov 2016 13:37
Last Modified:08 Nov 2016 13:43
Publisher:MDPI Publishing
ISSN:2220-9964
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3390/ijgi5110195

Download

Preview Icon on Download
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 10MB
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations