Header

UZH-Logo

Maintenance Infos

Multi-Day Recordings of Wearable Sensors Are Valid and Sensitive Measures of Function and Independence in Human Spinal Cord Injury


Brogioli, Michael; Popp, Werner L; Schneider, Sophie; Albisser, Urs; Brust, Anne K; Frotzler, Angela; Gassert, Roger; Curt, Armin; Starkey, Michelle L (2017). Multi-Day Recordings of Wearable Sensors Are Valid and Sensitive Measures of Function and Independence in Human Spinal Cord Injury. Journal of Neurotrauma, 34(6):1141-1148.

Abstract

Wearable sensor assessment tools have proven to be reliable in measuring function in normal and impaired movement disorders during well-defined assessment protocols. While such assessments can provide valid and sensitive measures of upper limb activity in spinal cord injury (SCI), no assessment tool has yet been introduced into unsupervised daily recordings to complement clinical assessments during rehabilitation. The objective of this study was to measure the overall amount of upper-limb activity in subjects with acute SCI using wearable sensors and relate this to lesion characteristics, independence, and function. The overall amount of upper extremity activity counts, measures of wheeling (speed and distance), and limb-use laterality were measured in 30 in-patients with an acute cervical or thoracic SCI three months after injury. The findings were related to the international standards for neurological classification of SCI, the spinal cord independence measure, and the upper extremity motor scores of the Graded and Redefined Assessment of Strength, Sensibility, and Prehension. Overall upper extremity activity counts were successfully recorded in all patients and correlated with the neurological level of injury and independence. Clinical measures of proximal muscle strength were related to overall activity count and peak velocity of wheeling. Compared with paraplegics, tetraplegics showed significantly lower activity counts and increased limb-use laterality. This is the first cross-sectional study showing the feasibility and clinical value of sensor recordings during unsupervised daily activities in rehabilitation. The strong relationship between sensor-based measures and clinical outcomes supports the application of such technology to assess and track changes in function during rehabilitation and in clinical trials.

Abstract

Wearable sensor assessment tools have proven to be reliable in measuring function in normal and impaired movement disorders during well-defined assessment protocols. While such assessments can provide valid and sensitive measures of upper limb activity in spinal cord injury (SCI), no assessment tool has yet been introduced into unsupervised daily recordings to complement clinical assessments during rehabilitation. The objective of this study was to measure the overall amount of upper-limb activity in subjects with acute SCI using wearable sensors and relate this to lesion characteristics, independence, and function. The overall amount of upper extremity activity counts, measures of wheeling (speed and distance), and limb-use laterality were measured in 30 in-patients with an acute cervical or thoracic SCI three months after injury. The findings were related to the international standards for neurological classification of SCI, the spinal cord independence measure, and the upper extremity motor scores of the Graded and Redefined Assessment of Strength, Sensibility, and Prehension. Overall upper extremity activity counts were successfully recorded in all patients and correlated with the neurological level of injury and independence. Clinical measures of proximal muscle strength were related to overall activity count and peak velocity of wheeling. Compared with paraplegics, tetraplegics showed significantly lower activity counts and increased limb-use laterality. This is the first cross-sectional study showing the feasibility and clinical value of sensor recordings during unsupervised daily activities in rehabilitation. The strong relationship between sensor-based measures and clinical outcomes supports the application of such technology to assess and track changes in function during rehabilitation and in clinical trials.

Statistics

Citations

Dimensions.ai Metrics
2 citations in Web of Science®
2 citations in Scopus®
2 citations in Microsoft Academic
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Uncontrolled Keywords:Clinical Neurology
Language:English
Date:2017
Deposited On:11 Nov 2016 13:14
Last Modified:19 Aug 2018 04:49
Publisher:Mary Ann Liebert
ISSN:0897-7151
OA Status:Closed
Publisher DOI:https://doi.org/10.1089/neu.2016.4583
PubMed ID:27533063

Download

Full text not available from this repository.
View at publisher

Get full-text in a library