Header

UZH-Logo

Maintenance Infos

Amyloid aggregation on lipid bilayers and its impact on membrane permeability


Friedman, R; Pellarin, R; Caflisch, A (2009). Amyloid aggregation on lipid bilayers and its impact on membrane permeability. Journal of Molecular Biology, 387(2):407-415.

Abstract

Fibrillar protein aggregates (amyloids) are involved in several common pathologies, e.g., Alzheimer's disease and type II diabetes. Accumulating evidence suggests that toxicity in amyloid-related diseases originates from the deposition of protein aggregates on the cell membrane, which results in bilayer disruption and cell leakage. The molecular mechanism of damage to the membrane, however, is still obscure. To shed light on it we have performed coarse-grained molecular dynamics simulations of fibril-forming amphipathic peptides in the presence of lipid vesicles. The simulation results show that highly amyloidogenic peptides fibrillate on the surface of the vesicle, damaging the bilayer and promoting leakage. In contrast, the ordered aggregation of peptides with low amyloidogenicity is hindered by the vesicles. Remarkably, leakage from the vesicle is caused by growing aggregates, but not mature fibrils. The simulation results provide a basis for understanding the range of aggregation behavior that is observed in experiments with fibril-forming (poly)peptides.

Abstract

Fibrillar protein aggregates (amyloids) are involved in several common pathologies, e.g., Alzheimer's disease and type II diabetes. Accumulating evidence suggests that toxicity in amyloid-related diseases originates from the deposition of protein aggregates on the cell membrane, which results in bilayer disruption and cell leakage. The molecular mechanism of damage to the membrane, however, is still obscure. To shed light on it we have performed coarse-grained molecular dynamics simulations of fibril-forming amphipathic peptides in the presence of lipid vesicles. The simulation results show that highly amyloidogenic peptides fibrillate on the surface of the vesicle, damaging the bilayer and promoting leakage. In contrast, the ordered aggregation of peptides with low amyloidogenicity is hindered by the vesicles. Remarkably, leakage from the vesicle is caused by growing aggregates, but not mature fibrils. The simulation results provide a basis for understanding the range of aggregation behavior that is observed in experiments with fibril-forming (poly)peptides.

Statistics

Citations

71 citations in Web of Science®
78 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 10 Feb 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:24 December 2009
Deposited On:10 Feb 2009 10:32
Last Modified:05 Apr 2016 12:58
Publisher:Elsevier
ISSN:0022-2836
Publisher DOI:https://doi.org/10.1016/j.jmb.2008.12.036
PubMed ID:19133272

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 716kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations