Header

UZH-Logo

Maintenance Infos

Short-term MRI measurements as predictors of EDSS progression in relapsing-remitting multiple sclerosis: grey matter atrophy but not lesions are predictive in a real-life setting


von Gumberz, J; Mahmoudi, M; Young, K; Schippling, S; Martin, R; Heesen, C; Siemonsen, S; Stellmann, J P (2016). Short-term MRI measurements as predictors of EDSS progression in relapsing-remitting multiple sclerosis: grey matter atrophy but not lesions are predictive in a real-life setting. PeerJ, 4:e2442.

Abstract

BACKGROUND Magnetic resonance imaging (MRI) is the best biomarker of inflammatory disease activity in relapsing remitting Multiple Sclerosis (RRMS) so far but the association with disability is weak. Appearance of new MRI-lesions is used to evaluate response to immunotherapies in individual patients as well as being the most common primary outcome in phase-2 trials. Measurements of brain atrophy show promising outcomes in natural cohort studies and some phase-2 trials. From a theoretical perspective they might represent irreversible neurodegeneration and be more closely associated with disability. However, these atrophy measurements are not yet established as prognostic factors in real-life clinical routine. High field MRI has improved image quality and resolution and new methods to measure atrophy dynamics have become available. OBJECTIVE To investigate the predictive value of MRI classification criteria in to high/low atrophy and inflammation groups, and to explore predictive capacity of two consecutive routine MRI scans for disability progression in RRMS in a real-life prospective cohort. METHODS 82 RRMS-patients (40 untreated, 42 treated with immunotherapies, mean age 40 years, median Expanded Disability Status Scale (EDSS) of 2, underwent two clinically indicated MRI scans (3 Tesla) within 5-14 months, and EDSS assessment after a mean of 3.0 (1.5-4.2) years. We investigated the predictive value of predefined classifications in low/high inflammatory and atrophy groups for EDSS progression (≥1.5 if baseline EDSS = 0, ≥1.0 if baseline EDSS <5, ≥0.5 for other) by chi-square tests and by analysis of variance (ANOVA). The classifications were based on current scientific or clinical recommendation (e.g., treatment response criteria). Brain atrophy was assessed with three different methods (SIENA, SIENAX, and FreeSurfer). Post-hoc analyses aimed to explore clinical data and dynamics of MRI outcomes as predictors in multivariate linear and logit models. RESULTS Progression was observed in 24% of patients and was independent from treatment status. None of the predefined classifications were predictive for progression. Explorative post-hoc analyses found lower baseline EDSS and higher grey matter atrophy (FreeSurfer) as best predictors (R (2) = 0.29) for EDSS progression and the accuracy was overall good (Area under the curve = 0.81). CONCLUSION Beside EDSS at baseline, short-term grey matter atrophy is predictive for EDSS progression in treated and untreated RRMS. The development of atrophy measurements for individual risk counselling and evaluation of treatment response seems possible, but needs further validation in larger cohorts. MRI-atrophy estimates from the FreeSurfer toolbox seem to be more reliable than older methods.

Abstract

BACKGROUND Magnetic resonance imaging (MRI) is the best biomarker of inflammatory disease activity in relapsing remitting Multiple Sclerosis (RRMS) so far but the association with disability is weak. Appearance of new MRI-lesions is used to evaluate response to immunotherapies in individual patients as well as being the most common primary outcome in phase-2 trials. Measurements of brain atrophy show promising outcomes in natural cohort studies and some phase-2 trials. From a theoretical perspective they might represent irreversible neurodegeneration and be more closely associated with disability. However, these atrophy measurements are not yet established as prognostic factors in real-life clinical routine. High field MRI has improved image quality and resolution and new methods to measure atrophy dynamics have become available. OBJECTIVE To investigate the predictive value of MRI classification criteria in to high/low atrophy and inflammation groups, and to explore predictive capacity of two consecutive routine MRI scans for disability progression in RRMS in a real-life prospective cohort. METHODS 82 RRMS-patients (40 untreated, 42 treated with immunotherapies, mean age 40 years, median Expanded Disability Status Scale (EDSS) of 2, underwent two clinically indicated MRI scans (3 Tesla) within 5-14 months, and EDSS assessment after a mean of 3.0 (1.5-4.2) years. We investigated the predictive value of predefined classifications in low/high inflammatory and atrophy groups for EDSS progression (≥1.5 if baseline EDSS = 0, ≥1.0 if baseline EDSS <5, ≥0.5 for other) by chi-square tests and by analysis of variance (ANOVA). The classifications were based on current scientific or clinical recommendation (e.g., treatment response criteria). Brain atrophy was assessed with three different methods (SIENA, SIENAX, and FreeSurfer). Post-hoc analyses aimed to explore clinical data and dynamics of MRI outcomes as predictors in multivariate linear and logit models. RESULTS Progression was observed in 24% of patients and was independent from treatment status. None of the predefined classifications were predictive for progression. Explorative post-hoc analyses found lower baseline EDSS and higher grey matter atrophy (FreeSurfer) as best predictors (R (2) = 0.29) for EDSS progression and the accuracy was overall good (Area under the curve = 0.81). CONCLUSION Beside EDSS at baseline, short-term grey matter atrophy is predictive for EDSS progression in treated and untreated RRMS. The development of atrophy measurements for individual risk counselling and evaluation of treatment response seems possible, but needs further validation in larger cohorts. MRI-atrophy estimates from the FreeSurfer toolbox seem to be more reliable than older methods.

Statistics

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

4 downloads since deposited on 18 Nov 2016
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2016
Deposited On:18 Nov 2016 08:41
Last Modified:04 Aug 2017 13:55
Publisher:PeerJ, Ltd.
ISSN:2167-8359
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.7717/peerj.2442
PubMed ID:27688965

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 692kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations