Header

UZH-Logo

Maintenance Infos

Eating disorders: from bench to bedside and back


Gaetani, Silvana; Romano, Adele; Provensi, Gustavo; Ricca, Valdo; Lutz, Thomas; Passani, Maria Beatrice (2016). Eating disorders: from bench to bedside and back. Journal of Neurochemistry, 139(5):691-699.

Abstract

The central nervous system and viscera constitute a functional ensemble, the gut-brain axis, that allows bidirectional information flow that contributes to the control of feeding behavior based not only on the homeostatic, but also on the hedonic aspects of food intake. The prevalence of eating disorders, such as anorexia nervosa, binge eating and obesity, poses an enormous clinical burden, and involves an ever-growing percentage of the population worldwide. Clinical and preclinical research is constantly adding new information to the field and orienting further studies with the aim of providing a foundation for developing more specific and effective treatment approaches to pathological conditions. A recent symposium at the XVI Congress of the Societá Italiana di Neuroscienze (SINS, 2015) 'Eating disorders: from bench to bedside and back' brought together basic scientists and clinicians with the objective of presenting novel perspectives in the neurobiology of eating disorders. Clinical studies presented by V. Ricca illustrated some genetic aspects of the psychopathology of anorexia nervosa. Preclinical studies addressed different issues ranging from the description of animal models that mimic human pathologies such as anorexia nervosa, diet-induced obesity, and binge eating disorders (T. Lutz), to novel interactions between peripheral signals and central circuits that govern food intake, mood and stress (A. Romano and G. Provensi). The gut-brain axis has received increasing attention in the recent years as preclinical studies are demonstrating that the brain and visceral organs such as the liver and guts, but also the microbiota are constantly engaged in processes of reciprocal communication, with unexpected physiological and pathological implications. Eating is controlled by a plethora of factors; genetic predisposition, early life adverse conditions, peripheral gastrointestinal hormones that act directly or indirectly on the central nervous system, all are receiving attention as they presumably contribute to the development of eating disorders.

Abstract

The central nervous system and viscera constitute a functional ensemble, the gut-brain axis, that allows bidirectional information flow that contributes to the control of feeding behavior based not only on the homeostatic, but also on the hedonic aspects of food intake. The prevalence of eating disorders, such as anorexia nervosa, binge eating and obesity, poses an enormous clinical burden, and involves an ever-growing percentage of the population worldwide. Clinical and preclinical research is constantly adding new information to the field and orienting further studies with the aim of providing a foundation for developing more specific and effective treatment approaches to pathological conditions. A recent symposium at the XVI Congress of the Societá Italiana di Neuroscienze (SINS, 2015) 'Eating disorders: from bench to bedside and back' brought together basic scientists and clinicians with the objective of presenting novel perspectives in the neurobiology of eating disorders. Clinical studies presented by V. Ricca illustrated some genetic aspects of the psychopathology of anorexia nervosa. Preclinical studies addressed different issues ranging from the description of animal models that mimic human pathologies such as anorexia nervosa, diet-induced obesity, and binge eating disorders (T. Lutz), to novel interactions between peripheral signals and central circuits that govern food intake, mood and stress (A. Romano and G. Provensi). The gut-brain axis has received increasing attention in the recent years as preclinical studies are demonstrating that the brain and visceral organs such as the liver and guts, but also the microbiota are constantly engaged in processes of reciprocal communication, with unexpected physiological and pathological implications. Eating is controlled by a plethora of factors; genetic predisposition, early life adverse conditions, peripheral gastrointestinal hormones that act directly or indirectly on the central nervous system, all are receiving attention as they presumably contribute to the development of eating disorders.

Statistics

Citations

2 citations in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 24 Nov 2016
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
05 Vetsuisse Faculty > Institute of Veterinary Physiology
Dewey Decimal Classification:570 Life sciences; biology
Date:21 September 2016
Deposited On:24 Nov 2016 13:13
Last Modified:25 Nov 2016 02:03
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0022-3042
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1111/jnc.13848
PubMed ID:27649625

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 418kB
View at publisher