Header

UZH-Logo

Maintenance Infos

A structural perspective on ClC channel and transporter function


Dutzler, R (2007). A structural perspective on ClC channel and transporter function. FEBS Letters, 581(15):2839-44.

Abstract

The ClC chloride channels and transporters constitute a large family of membrane proteins that is involved in a variety of physiological processes. All members share a conserved molecular architecture that consists of a complex transmembrane transport domain followed by a cytoplasmic domain. Despite the strong conservation, the family shows an unusually broad variety of functional behaviors as some members work as gated chloride channels and others as secondary active chloride transporters. The conservation in the structure and the functional resemblance of gating and coupled transport suggests a strong mechanistic relationship between these seemingly contradictory transport modes. The cytoplasmic domains constitute putative regulatory components that are ubiquitous in eukaryotic ClC family members and that in certain cases interact with nucleotides thus linking ion transport to nucleotide sensing by yet unknown mechanisms.

Abstract

The ClC chloride channels and transporters constitute a large family of membrane proteins that is involved in a variety of physiological processes. All members share a conserved molecular architecture that consists of a complex transmembrane transport domain followed by a cytoplasmic domain. Despite the strong conservation, the family shows an unusually broad variety of functional behaviors as some members work as gated chloride channels and others as secondary active chloride transporters. The conservation in the structure and the functional resemblance of gating and coupled transport suggests a strong mechanistic relationship between these seemingly contradictory transport modes. The cytoplasmic domains constitute putative regulatory components that are ubiquitous in eukaryotic ClC family members and that in certain cases interact with nucleotides thus linking ion transport to nucleotide sensing by yet unknown mechanisms.

Statistics

Citations

34 citations in Web of Science®
34 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 17 Mar 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2007
Deposited On:17 Mar 2009 10:45
Last Modified:05 Apr 2016 12:58
Publisher:Elsevier
ISSN:0014-5793
Publisher DOI:https://doi.org/10.1016/j.febslet.2007.04.016
PubMed ID:17452037

Download